NTS ABSTRACTSpring2019
Return to [1]
Jan 23
Yunqing Tang |
Reductions of abelian surfaces over global function fields |
For a non-isotrivial ordinary abelian surface $A$ over a global function field, under mild assumptions, we prove that there are infinitely many places modulo which $A$ is geometrically isogenous to the product of two elliptic curves. This result can be viewed as a generalization of a theorem of Chai and Oort. This is joint work with Davesh Maulik and Ananth Shankar. |
Jan 24
Hassan-Mao-Smith--Zhu |
The diophantine exponent of the $\mathbb{Z}/q\mathbb{Z}$ points of $S^{d-2}\subset S^d$ |
Abstract: Assume a polynomial-time algorithm for factoring integers, Conjecture~\ref{conj}, $d\geq 3,$ and $q$ and $p$ prime numbers, where $p\leq q^A$ for some $A>0$. We develop a polynomial-time algorithm in $\log(q)$ that lifts every $\mathbb{Z}/q\mathbb{Z}$ point of $S^{d-2}\subset S^{d}$ to a $\mathbb{Z}[1/p]$ point of $S^d$ with the minimum height. We implement our algorithm for $d=3 \text{ and }4$. Based on our numerical results, we formulate a conjecture which can be checked in polynomial-time and gives the optimal bound on the diophantine exponent of the $\mathbb{Z}/q\mathbb{Z}$ points of $S^{d-2}\subset S^d$. |
Jan 31
Kyle Pratt |
Breaking the $\frac{1}{2}$-barrier for the twisted second moment of Dirichlet $L$-functions |
Abstract: I will discuss recent work, joint with Bui, Robles, and Zaharescu, on a moment problem for Dirichlet $L$-functions. By way of motivation I will spend some time discussing the Lindel\"of Hypothesis, and work of Bettin, Chandee, and Radziwi\l\l. The talk will be accessible, as I will give lots of background information and will not dwell on technicalities. |
Feb 7
Shamgar Gurevich |
Harmonic Analysis on $GL_n$ over finite fields |
Abstract: There are many formulas that express interesting properties of a group G in terms of sums over its characters.
For evaluating or estimating these sums, one of the most salient quantities to understand is the {\it character ratio}: $$trace (\rho(g))/dim (\rho),$$ for an irreducible representation $\rho$ of G and an element g of G. For example, Diaconis and Shahshahani stated a formula of this type for analyzing G-biinvariant random walks on G. It turns out that, for classical groups G over finite fields (which provide most examples of finite simple groups), there is a natural invariant of representations that provides strong information on the character ratio. We call this invariant {\it rank}. This talk will discuss the notion of rank for GLn over finite fields, and apply the results to random walks. This is joint work with Roger Howe (TAMU). |