Fall 2022 analysis seminar

From DEV UW-Math Wiki
Jump to navigation Jump to search

The 2022-2023 Analysis Seminar will be organized by Shaoming Guo. The regular time and place for the Seminar will be Tuesdays at 4:00 p.m. in Van Vleck B139 (in some cases the seminar may be scheduled at different time to accommodate speakers). If you would like to subscribe to the Analysis seminar list, send a blank email to analysis+join (at) g-groups (dot) wisc (dot) edu. If you are from an institution different than UW-Madison, please send as well as an additional email to Shaoming. If you'd like to suggest speakers for the spring semester please contact Shaoming.

All talks will be in-person unless otherwise specified.





Analysis Seminar Schedule

date speaker institution title host(s)
08.23 Gustavo Garrigós University of Murcia Approximation by N-term trigonometric polynomials and greedy algorithms Andreas Seeger
08.30 Simon Myerson Warwick Forms of the Circle Method Shaoming Guo
09.13

(first week of semester)

Zane Li UW Madison Title Analysis group
09.20 Andrej Zlatoš UCSD Title Hung Tran
09.23-09.25 RTG workshop in Harmonic Analysis Shaoming Guo and Andreas Seeger
09.27

(online, special time)

Michael Magee Durham Title Simon Marshall
10.04 Philip Gressman UPenn Title Shaoming Guo
10.11 Detlef Müller CAU Kiel Title Betsy Stovall and Andreas Seeger
10.18 (tent. reserved) Title Betsy Stovall
10.25 Milivoje Lukic Rice Title Sergey Denisov
11.01 Ziming Shi Rutgers Title Xianghong Gong
11.08 Robert Fraser Wichita State University Title Andreas Seeger
11.15 Brian Cook Virginia Tech Title Brian Street
11.22 Thanksgiving
11.29 (tent reserved) Title Betsy Stovall
12.06 Shengwen Gan MIT Title Shaoming Guo and Andreas Seeger
12.13 tent. reserved Title Andreas Seeger and Brian Street

Abstracts

Gustavo Garrigós

Title: Approximation by N-term trigonometric polynomials and greedy algorithms

Link to Abstract: [1]

Simon Myerson

Title: Forms of the circle method

Abstract: The circle method is an analytic proof strategy, typically used in number theory when one wants to estimate the number of integer lattice points in some interesting set. Traditionally the first step is to evaluate the innocent integral $ \int_0^1 e^{2 \pi i t n} dt $ to give 1 if $ n = 0 $ and 0 if $ n $ is any other integer. Since Heath-Brown’s delta-method in the 90s this simplest step has been embellished with carefully constructed partitions of unity. In this informal discussion I will interpret these as different versions of the circle method and suggest how to understand their relative advantages.


Name

Title:

Abstract


Name

Title

Abstract


Name

Title

Abstract


Name

Title

Abstract



Links to previous analysis seminars