Applied Algebra Seminar/Abstracts F13: Difference between revisions

From DEV UW-Math Wiki
Jump to navigation Jump to search
Line 1: Line 1:
== October 31 ==
== October 31 ==
{| align="top"
{|
|Title:  
|align="top" | Title:  
|Functional Graphs of Affine-Linear Transformations over Finite Fields
|Functional Graphs of Affine-Linear Transformations over Finite Fields
|-
|-
|Abstract:  
|align="top" |Abstract:  
|A linear transformation <math>A: (\mathbb{F}_q)^n \to (\mathbb{F}_q)^n</math> gives rise to a directed graph by regarding the elements of (\F_q)^n as vertices and drawing an edge from v to w if Av = w. In 1959, Elspas determined the "functional graphs" on q^n vertices that are realized in this way. In doing so he showed that there are many non-similar linear transformations which have isomorphic functional graphs (and so are conjugate by a non-linear permutation of (\F_q)^n). I review some of this work and prove an new upper bound on the number of equivalence classes of affine-linear transformations of (F_q)^n under the equivalence relation of isomorphism of functional graphs. This bound is significantly smaller than the number of conjugacy classes of GL_n(q). This is joint work with Eric Bach.
|A linear transformation <math>A: (\mathbb{F}_q)^n \to (\mathbb{F}_q)^n</math> gives rise to a directed graph by regarding the elements of (\F_q)^n as vertices and drawing an edge from v to w if Av = w. In 1959, Elspas determined the "functional graphs" on q^n vertices that are realized in this way. In doing so he showed that there are many non-similar linear transformations which have isomorphic functional graphs (and so are conjugate by a non-linear permutation of (\F_q)^n). I review some of this work and prove an new upper bound on the number of equivalence classes of affine-linear transformations of (F_q)^n under the equivalence relation of isomorphism of functional graphs. This bound is significantly smaller than the number of conjugacy classes of GL_n(q). This is joint work with Eric Bach.
|}
|}

Revision as of 15:46, 23 August 2013

October 31

Title: Functional Graphs of Affine-Linear Transformations over Finite Fields
Abstract: A linear transformation [math]\displaystyle{ A: (\mathbb{F}_q)^n \to (\mathbb{F}_q)^n }[/math] gives rise to a directed graph by regarding the elements of (\F_q)^n as vertices and drawing an edge from v to w if Av = w. In 1959, Elspas determined the "functional graphs" on q^n vertices that are realized in this way. In doing so he showed that there are many non-similar linear transformations which have isomorphic functional graphs (and so are conjugate by a non-linear permutation of (\F_q)^n). I review some of this work and prove an new upper bound on the number of equivalence classes of affine-linear transformations of (F_q)^n under the equivalence relation of isomorphism of functional graphs. This bound is significantly smaller than the number of conjugacy classes of GL_n(q). This is joint work with Eric Bach.