Group Actions and Dynamics Seminar: Difference between revisions

From DEV UW-Math Wiki
Jump to navigation Jump to search
No edit summary
Line 18: Line 18:
|September 16
|September 16
|[https://loweb24.github.io Ben Lowe] (Chicago)
|[https://loweb24.github.io Ben Lowe] (Chicago)
|TBA
|Rigidity and Finiteness of Totally Geodesic Hypersurfaces in Negative Curvature
|Al Assal
|Al Assal
|-
|-
Line 88: Line 88:


===Ben Lowe===
===Ben Lowe===
This talk will discuss progress towards answering the following question: if a closed negatively curved manifold M has infinitely many totally geodesic hypersurfaces, then must it have constant curvature (and thus, by work of Bader-Fisher-Stover-Miller and Margulis-Mohamaddi, be homothetic to an arithmetic hyperbolic manifold)?  First, I will talk about work that gives a partial answer to this question under the assumption that M is hyperbolizable.  This part uses Ratner’s theorems in an essential way.  I will also talk about work that gives an affirmative answer to the question if the metric on M is analytic.  In this case the analyticity condition together with properties of the geodesic flow in negative curvature allow us to conclude what in constant curvature would follow from Ratner’s theorems.  This talk is based on joint work with Fernando Al Assal, and Simion Filip and David Fisher. 


===Harrison Bray===
===Harrison Bray===

Revision as of 23:15, 29 August 2024

During the Fall 2024 semester, RTG / Group Actions and Dynamics seminar meets in room B325 Van Vleck on Mondays from 2:25pm - 3:15pm. To sign up for the mailing list send an email from your wisc.edu address to dynamics+join@g-groups.wisc.edu. For more information, contact Paul Apisa, Marissa Loving, Caglar Uyanik, Chenxi Wu or Andy Zimmer.


Fall 2024

date speaker title host(s)
September 9 Max Lahn (Michigan) TBA Uyanik and Zimmer
September 16 Ben Lowe (Chicago) Rigidity and Finiteness of Totally Geodesic Hypersurfaces in Negative Curvature Al Assal
September 23 Harrison Bray (George Mason) A 0-1 law for horoball packings of coarsely hyperbolic metric spaces and applications to cusp excursion Zimmer
September 30 Eliot Bongiovanni (Rice) TBA Uyanik
October 7 TBA TBA TBA
October 14 Francis Bonahon (USC/Michigan State) TBA Loving
October 21 Dongryul Kim (Yale) TBA Uyanik
October 28 Matthew Durham (UC Riverside) TBA Loving
November 4 Caglar Uyanik (UW) Cannon-Thurston maps, random walks, and rigidity local
November 11 TBA TBA TBA
November 18 Paige Hillen (UCSB) TBA Dymarz
November 25 Thanksgiving week
December 2 reserved TBA TBA
December 9 reserved TBA TBA

Fall Abstracts

Max Lahn

Ben Lowe

This talk will discuss progress towards answering the following question: if a closed negatively curved manifold M has infinitely many totally geodesic hypersurfaces, then must it have constant curvature (and thus, by work of Bader-Fisher-Stover-Miller and Margulis-Mohamaddi, be homothetic to an arithmetic hyperbolic manifold)? First, I will talk about work that gives a partial answer to this question under the assumption that M is hyperbolizable. This part uses Ratner’s theorems in an essential way. I will also talk about work that gives an affirmative answer to the question if the metric on M is analytic. In this case the analyticity condition together with properties of the geodesic flow in negative curvature allow us to conclude what in constant curvature would follow from Ratner’s theorems. This talk is based on joint work with Fernando Al Assal, and Simion Filip and David Fisher.

Harrison Bray

On the cusp of the 100 year anniversary, Khinchin's theorem implies a strong 0-1 law for the real line; namely, the set of real numbers within distance q^{-2-\epsilon} of infinitely many rationals p/q is Lebesgue measure 0 for \epsilon>0, and full measure for \epsilon=0. In these lectures, I will present an analogous result for horoball packings in Gromov hyperbolic metric spaces. As an application, we prove a logarithm law; that is, we prove asymptotics for the depth in the packing of a typical geodesic. This is joint work with Giulio Tiozzo.

Eliot Bongiovanni

Francis Bonahon

Dongryul Kim

Matthew Durham

Caglar Uyanik

Cannon and Thurston showed that a hyperbolic 3-manifold that fibers over the circle gives rise to a sphere-filling curve. The universal cover of the fiber surface is quasi-isometric to the hyperbolic plane, whose boundary is a circle, and the universal cover of the 3-manifold is 3-dimensional hyperbolic space, whose boundary is the 2-sphere. Cannon and Thurston showed that the inclusion map between the universal covers extends to a continuous map between their boundaries, whose image is dense. In particular, any measure on the circle pushes forward to a measure on the 2-sphere using this map. We compare several natural measures coming from this construction.

Paige Hillen

Spring 2025

date speaker title host(s)
January 27 Ben Stucky (Beloit) TBA semi-local
April 21 Mladen Bestvina (Utah) Distinguished Lecture Series Uyanik
April 28 Inanc Baykur (UMass) TBA Uyanik


Archive of past Dynamics seminars

2023-2024 Dynamics_Seminar_2023-2024

2022-2023 Dynamics_Seminar_2022-2023

2021-2022 Dynamics_Seminar_2021-2022

2020-2021 Dynamics_Seminar_2020-2021