Algebra and Algebraic Geometry Seminar Spring 2018: Difference between revisions

From DEV UW-Math Wiki
Jump to navigation Jump to search
No edit summary
Line 52: Line 52:
|[[#Moisés Herradón Cueto|TBA]]
|[[#Moisés Herradón Cueto|TBA]]
|Local
|Local
|-
|March 16
|[https://math.berkeley.edu/~chenhi/ Harrison Chen (Berkeley)]
|[[#Harrison Chen|TBA]]
|Andrei
|-
|-
|April 6
|April 6

Revision as of 22:07, 6 February 2018

The seminar meets on Fridays at 2:25 pm in room B113.

Here is the schedule for the previous semester.

Algebra and Algebraic Geometry Mailing List

  • Please join the AGS Mailing List to hear about upcoming seminars, lunches, and other algebraic geometry events in the department (it is possible you must be on a math department computer to use this link).

Spring 2018 Schedule

date speaker title host(s)
January 26 Tasos Moulinos (UIC) Derived Azumaya Algebras and Twisted K-theory Michael
February 2 Daniel Erman (Wisconsin) TBA Local
February 8 2:30-3:30 in VV B113 Roman Fedorov (University of Pittsburgh) A conjecture of Grothendieck and Serre on principal bundles in mixed characteristic Dima
February 9 Juliette Bruce (Wisconsin) Asymptotic Syzygies in the Semi-Ample Setting Local
February 16 Andrei Caldararu (Wisconsin) Computing a categorical Gromov-Witten invariant Local
February 23 Aron Heleodoro (Northwestern) TBA Dima
March 2 Moisés Herradón Cueto (Wisconsin) TBA Local
March 16 Harrison Chen (Berkeley) TBA Andrei
April 6 Phil Tosteson (Michigan) TBA Steven
April 13 Reserved Daniel
April 20 Alena Pirutka (NYU) TBA Jordan
April 27 Alexander Yom Din (Caltech) TBA Dima
May 4 John Lesieutre (UIC) TBA Daniel

Abstracts

Tasos Moulinos

Derived Azumaya Algebras and Twisted K-theory

Topological K-theory of dg-categories is a localizing invariant of dg-categories over [math]\displaystyle{ \mathbb{C} }[/math] taking values in the [math]\displaystyle{ \infty }[/math]-category of [math]\displaystyle{ KU }[/math]-modules. In this talk I describe a relative version of this construction; namely for [math]\displaystyle{ X }[/math] a quasi-compact, quasi-separated [math]\displaystyle{ \mathbb{C} }[/math]-scheme I construct a functor valued in the [math]\displaystyle{ \infty }[/math]-category of sheaves of spectra on [math]\displaystyle{ X(\mathbb{C}) }[/math], the complex points of [math]\displaystyle{ X }[/math]. For inputs of the form [math]\displaystyle{ \operatorname{Perf}(X, A) }[/math] where [math]\displaystyle{ A }[/math] is an Azumaya algebra over [math]\displaystyle{ X }[/math], I characterize the values of this functor in terms of the twisted topological K-theory of [math]\displaystyle{ X(\mathbb{C}) }[/math]. From this I deduce a certain decomposition, for [math]\displaystyle{ X }[/math] a finite CW-complex equipped with a bundle [math]\displaystyle{ P }[/math] of projective spaces over [math]\displaystyle{ X }[/math], of [math]\displaystyle{ KU(P) }[/math] in terms of the twisted topological K-theory of [math]\displaystyle{ X }[/math] ; this is a topological analogue of a result of Quillen’s on the algebraic K-theory of Severi-Brauer schemes.

Roman Fedorov

A conjecture of Grothendieck and Serre on principal bundles in mixed characteristic

Let G be a reductive group scheme over a regular local ring R. An old conjecture of Grothendieck and Serre predicts that such a principal bundle is trivial, if it is trivial over the fraction field of R. The conjecture has recently been proved in the "geometric" case, that is, when R contains a field. In the remaining case, the difficulty comes from the fact, that the situation is more rigid, so that a certain general position argument does not go through. I will discuss this difficulty and a way to circumvent it to obtain some partial results.

Juliette Bruce

Asymptotic Syzygies in the Semi-Ample Setting

In recent years numerous conjectures have been made describing the asymptotic Betti numbers of a projective variety as the embedding line bundle becomes more ample. I will discuss recent work attempting to generalize these conjectures to the case when the embedding line bundle becomes more semi-ample. (Recall a line bundle is semi-ample if a sufficiently large multiple is base point free.) In particular, I will discuss how the monomial methods of Ein, Erman, and Lazarsfeld used to prove non-vanishing results on projective space can be extended to prove non-vanishing results for products of projective space.

Andrei Caldararu

Computing a categorical Gromov-Witten invariant

In his 2005 paper "The Gromov-Witten potential associated to a TCFT" Kevin Costello described a procedure for recovering an analogue of the Gromov-Witten potential directly out of a cyclic A-inifinity algebra or category. Applying his construction to the derived category of sheaves of a complex projective variety provides a definition of higher genus B-model Gromov-Witten invariants, independent of the BCOV formalism. This has several advantages. Due to the categorical invariance of these invariants, categorical mirror symmetry automatically implies classical mirror symmetry to all genera. Also, the construction can be applied to other categories like categories of matrix factorization, giving a direct definition of FJRW invariants, for example.

In my talk I shall describe the details of the computation (joint with Junwu Tu) of the invariant, at g=1, n=1, for elliptic curves. The result agrees with the predictions of mirror symmetry, matching classical calculations of Dijkgraaf. It is the first non-trivial computation of a categorical Gromov-Witten invariant.

Aron Heleodoro

TBA

Alexander Yom Din

TBA