PDE Geometric Analysis seminar: Difference between revisions

From DEV UW-Math Wiki
Jump to navigation Jump to search
No edit summary
Line 79: Line 79:
| David Kaspar (Brown)
| David Kaspar (Brown)
|[[# |    ]]
|[[# |    ]]
| Tran}
| Tran
|}


=Abstracts=
=Abstracts=
Line 88: Line 89:


Bose-Einstein condensates (BEC) are a state of matter in which supercooled atoms condense into the lowest possible quantum state.  One interesting important feature of BECs are the presence of vortices that form when the condensate is stirred with lasers.  I will discuss the behavior of these vortices, which interact with both the confinement potential and other vortices.  I will also discuss a related inverse problem in which the features of the confinement can be extracted by the propagation of vortex dipoles.
Bose-Einstein condensates (BEC) are a state of matter in which supercooled atoms condense into the lowest possible quantum state.  One interesting important feature of BECs are the presence of vortices that form when the condensate is stirred with lasers.  I will discuss the behavior of these vortices, which interact with both the confinement potential and other vortices.  I will also discuss a related inverse problem in which the features of the confinement can be extracted by the propagation of vortex dipoles.
===Donghyun Lee===
The Boltzmann equation with specular boundary condition in convex domains
I will present recent work (https://arxiv.org/abs/1604.04342) with Chanwoo Kim on the global-wellposedness and stability of the Boltzmann equation in general smooth convex domains.

Revision as of 14:32, 15 September 2016

The seminar will be held in room 901 of Van Vleck Hall on Mondays from 3:30pm - 4:30pm, unless indicated otherwise.

Previous PDE/GA seminars

Tentative schedule for Fall 2016

PDE GA Seminar Schedule Fall 2016

date speaker title host(s)
September 12 Daniel Spirn (U of Minnesota) Dipole Trajectories in Bose-Einstein Condensates Kim
September 19 Donghyun Lee (UW-Madison) The Boltzmann equation with specular boundary condition in convex domains Feldman
September 26 Kevin Zumbrun (Indiana) Kim
October 3 Will Feldman (UChicago ) Lin & Tran
October 10 Ryan Hynd (UPenn) Extremal functions for Morrey’s inequality in convex domains Feldman
October 17 Gung-Min Gie (Louisville) Kim
October 24 Tau Shean Lim (UW Madison) TBA Kim & Tran
October 31 Tarek Elgindi ( Princeton) Propagation of Singularities in Incompressible Fluids Lee & Kim
November 7 Adrian Tudorascu (West Virginia) Feldman
November 14 Alexis Vasseur ( UT-Austin) Feldman
November 21 Minh-Binh Tran (UW Madison ) Quantum Kinetic Problems Hung Tran
November 28 ( )
December 5 Brian Weber (University of Pennsylvania) TBA Bing Wang
December 12 David Kaspar (Brown) Tran

Abstracts

Daniel Spirn

Dipole Trajectories in Bose-Einstein Condensates

Bose-Einstein condensates (BEC) are a state of matter in which supercooled atoms condense into the lowest possible quantum state. One interesting important feature of BECs are the presence of vortices that form when the condensate is stirred with lasers. I will discuss the behavior of these vortices, which interact with both the confinement potential and other vortices. I will also discuss a related inverse problem in which the features of the confinement can be extracted by the propagation of vortex dipoles.

Donghyun Lee

The Boltzmann equation with specular boundary condition in convex domains

I will present recent work (https://arxiv.org/abs/1604.04342) with Chanwoo Kim on the global-wellposedness and stability of the Boltzmann equation in general smooth convex domains.