Applied/ACMS/absF16: Difference between revisions
Line 6: | Line 6: | ||
When modeling incompressible flows with a free surface, many situations are compatible with the so-called shallow-water assumption: the length of the domain is much larger than the average depth. Starting from the Navier-Stokes equations or the Euler equations for water flows with free surface, average processing or asymptotic analysis may lead to the Saint-Venant equations, which is a classical hyperbolic system of conservation laws. The goal of this talk is to go one step further, accounting for vertical effects. This leads to dispersive equations, such as the well-known Green–Naghdi model. Despite the change of nature of the equations, we will see that many properties are shared by the Saint-Venant equations and the Green–Naghdi equations. | When modeling incompressible flows with a free surface, many situations are compatible with the so-called shallow-water assumption: the length of the domain is much larger than the average depth. Starting from the Navier-Stokes equations or the Euler equations for water flows with free surface, average processing or asymptotic analysis may lead to the Saint-Venant equations, which is a classical hyperbolic system of conservation laws. The goal of this talk is to go one step further, accounting for vertical effects. This leads to dispersive equations, such as the well-known Green–Naghdi model. Despite the change of nature of the equations, we will see that many properties are shared by the Saint-Venant equations and the Green–Naghdi equations. | ||
=== Rich Kerswell (Bristol) === | |||
''Using optimization to reveal scaling laws in turbulent flows'' | |||
In many fluid flow situations there is an a priori unknown global quantity, such as heat flux in convection or mass flux in pressure-driven flow, which is of overriding physical interest. Understanding how this quantity scales with the non-dimensional parameters describing the flow situation as one or more of these parameters become large (so that the flow is turbulent) is then a fundamental problem. In this talk, I will briefly review one particular approach to tackling this issue based upon optimization and then discuss how a variety of new developments augur well for future progress. |
Revision as of 21:11, 2 September 2016
ACMS Abstracts: Fall 2016
Nicolas Seguin (Universite Nantes)
Non-hydrostatic extension of classical shallow-water models
When modeling incompressible flows with a free surface, many situations are compatible with the so-called shallow-water assumption: the length of the domain is much larger than the average depth. Starting from the Navier-Stokes equations or the Euler equations for water flows with free surface, average processing or asymptotic analysis may lead to the Saint-Venant equations, which is a classical hyperbolic system of conservation laws. The goal of this talk is to go one step further, accounting for vertical effects. This leads to dispersive equations, such as the well-known Green–Naghdi model. Despite the change of nature of the equations, we will see that many properties are shared by the Saint-Venant equations and the Green–Naghdi equations.
Rich Kerswell (Bristol)
Using optimization to reveal scaling laws in turbulent flows
In many fluid flow situations there is an a priori unknown global quantity, such as heat flux in convection or mass flux in pressure-driven flow, which is of overriding physical interest. Understanding how this quantity scales with the non-dimensional parameters describing the flow situation as one or more of these parameters become large (so that the flow is turbulent) is then a fundamental problem. In this talk, I will briefly review one particular approach to tackling this issue based upon optimization and then discuss how a variety of new developments augur well for future progress.