|
|
Line 164: |
Line 164: |
|
| |
|
| = High School Meetings = | | = High School Meetings = |
|
| |
| ==September 28 2015==
| |
| <center>
| |
| {| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
| |
| |-
| |
| | bgcolor="#e8b2b2" align="center" style="font-size:125%" | '''Prof. Daniel Erman'''
| |
| |-
| |
| | bgcolor="#BDBDBD" align="center" | '''Title: How to Catch a (Data) Thief'''
| |
| |-
| |
| | bgcolor="#BDBDBD" |
| |
| I will discuss some surprising statistical facts that have been used to catch companies that lie about data.
| |
|
| |
| |}
| |
| </center>
| |
|
| |
| ==October 19 2015==
| |
| <center>
| |
| {| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
| |
| |-
| |
| | bgcolor="#e8b2b2" align="center" style="font-size:125%" | '''Carolyn Abbott'''
| |
| |-
| |
| | bgcolor="#BDBDBD" align="center" | '''Title: Donuts and coffee cups: the topology of surfaces'''
| |
| |-
| |
| | bgcolor="#BDBDBD" |
| |
| A classic problem in topology is to decide whether one surfaces can be deformed into another, without creating any holes or connecting any new points (stretching and bending is allowed!). If you can do so, such surfaces are considered 'the same.' We will formalize this notion and classify all closed surfaces, along the way answering such questions as whether a coffee cup is the same as a donut.
| |
|
| |
| |}
| |
| </center>
| |
|
| |
| ==February 22 2016==
| |
| <center>
| |
| {| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
| |
| |-
| |
| | bgcolor="#e8b2b2" align="center" style="font-size:125%" | '''Jordan Ellenberg'''
| |
| |-
| |
| | bgcolor="#BDBDBD" align="center" | '''Title: The Game of Set'''
| |
| |-
| |
| | bgcolor="#BDBDBD" |
| |
| TBD
| |
|
| |
| |}
| |
| </center>
| |
|
| |
| ==March 31 2016==
| |
| <center>
| |
| {| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
| |
| |-
| |
| | bgcolor="#e8b2b2" align="center" style="font-size:125%" | '''Daniel Erman'''
| |
| |-
| |
| | bgcolor="#BDBDBD" align="center" | '''Title: How to catch a (data) thief'''
| |
| |-
| |
| | bgcolor="#BDBDBD" |
| |
| I will discuss some surprising statistical facts that have been used to catch companies that lie about data.
| |
|
| |
|
| |
| |}
| |
| </center>
| |
|
| |
| ==April 18 2016==
| |
| <center>
| |
| {| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
| |
| |-
| |
| | bgcolor="#e8b2b2" align="center" style="font-size:125%" | '''DJ Bruce'''
| |
| |-
| |
| | bgcolor="#BDBDBD" align="center" | '''Title: To Infinity and Beyond'''
| |
| |-
| |
| | bgcolor="#BDBDBD" |
| |
| 1, 2, 3,..., infinity? What is infinity? Is infinity plus one bigger than infinity? Beginning by figuring out what we mean when we say to collections of objects have the same number of things we will slowly work our way deep into the garden of infinity. A garden that is often profoundly strange and filled with quite a few surprising snakes.
| |
|
| |
|
| |
| |}
| |
| </center>
| |
|
| |
| ==April 21 2016==
| |
| <center>
| |
| {| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
| |
| |-
| |
| | bgcolor="#e8b2b2" align="center" style="font-size:125%" | '''DJ Bruce'''
| |
| |-
| |
| | bgcolor="#BDBDBD" align="center" | '''Title: Can you untie a know with a knot'''
| |
| |-
| |
| | bgcolor="#BDBDBD" |
| |
| Is it possible to tie two knots on a rope such that when you slide them together they unknot themselves? The answer turns out to be interesting, and related to the sum
| |
| 1-1+1-1+1-1+...
| |
|
| |
| |}
| |
| </center>
| |
|
| |
| ==April 21 2016==
| |
| <center>
| |
| {| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
| |
| |-
| |
| | bgcolor="#e8b2b2" align="center" style="font-size:125%" | '''DJ Bruce'''
| |
| |-
| |
| | bgcolor="#BDBDBD" align="center" | '''Title: Can you untie a know with a knot'''
| |
| |-
| |
| | bgcolor="#BDBDBD" |
| |
| Is it possible to tie two knots on a rope such that when you slide them together they unknot themselves? The answer turns out to be interesting, and related to the sum
| |
| 1-1+1-1+1-1+...
| |
|
| |
| |}
| |
| </center>
| |
|
| |
| ==May 2 2016==
| |
| <center>
| |
| {| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
| |
| |-
| |
| | bgcolor="#e8b2b2" align="center" style="font-size:125%" | '''DJ Bruce'''
| |
| |-
| |
| | bgcolor="#BDBDBD" align="center" | '''Title: Is any knot not the unknot?'''
| |
| |-
| |
| | bgcolor="#BDBDBD" |
| |
| You're walking home from school, and you pull out your head phones to listen to some tunes. However, inevitably they are a horribly tangled mess, but are they really a knot? We'll talk about what exactly is a knot, and how we can tell when something is not the unknot.
| |
|
| |
|
| |
|
| |
| |}
| |
| </center>
| |