Algebraic Geometry Seminar Fall 2014: Difference between revisions
Line 80: | Line 80: | ||
report on recent progress in this direction. The talk is based on | report on recent progress in this direction. The talk is based on | ||
joint work with Olgur Celikbas, Li Liang, and Grep Piepmeyer. | joint work with Olgur Celikbas, Li Liang, and Grep Piepmeyer. | ||
===Vlad Matei=== | |||
In 2012, J.P Keating and Z. Rudnick published a paper where they resolved a function field version of the Montgomery-Goldston pair correlation conjecture. Their proof relies on a recent equidistribution result of N. Katz. In joint work with Daniel Hast, we reprove their result by counting points on a certain variety using a twisted Grothendieck-Lefschetz formula and obtain also information about higher moments. | |||
Moreover our method allows us to also give a proof of the autocorrelation of the Mobius function on average in the function field setting, also known as the Chowla conjecture. |
Revision as of 03:07, 13 October 2014
The seminar meets on Fridays at 2:25 pm in Van Vleck B131.
The schedule for the previous semester is here.
Algebraic Geometry Mailing List
- Please join the Algebraic Geometry Mailing list to hear about upcoming seminars, lunches, and other algebraic geometry events in the department (it is possible you must be on a math department computer to use this link).
Fall 2014 Schedule
date | speaker | title | host(s) |
---|---|---|---|
September 12 | Andrei Caldararu (UW) | Geometric and algebraic significance of the Bridgeland differential | (local) |
September 19 | Greg G. Smith (Queen's University) | Toric vector bundles | (Daniel) |
October 3 | Daniel Erman (UW) | Tate resolutions for products of projective spaces | (local) |
October 10 | Lars Winther Christensen (Texas Tech University) | Beyond Tate (co)homology | Daniel |
October 17 | Claudiu Raicu (Notre Dame University) | TBA | Daniel |
October 31 | Anatoly Libgober (UIC) | TBA | Max |
November 7 | Vlad Matei (UW) | Moments of arithmetic functions in short intervals | Local |
November 21 | Eyal Markman (UMass Amherst) | TBA | Andrei |
December 5 | DJ Bruce (UW) | TBA | local |
Abstracts
Andrei Caldararu
Several years ago Tom Bridgeland suggested that there should exist interesting chain maps C_*(M_{g,n}) -> C_{*+2}(M_{g,n+1}) and he conjectured some applications of these maps to mirror symmetry. I shall present a precise definition of these maps using techniques from the theory of ribbon graphs, and discuss a recent result (joint with Dima Arinkin) about the homology of the total complex associated to the bicomplex obtained from these maps. Then I shall speculate (wildly) about applications to mirror symmetry.
Eyal Markman
TBA
Lars W Christensen
Tate (co)homology was originally defined for modules over group algebras. The cohomological theory has a very satisfactory generalization---Tate--Vogel cohomology or stable cohomology---to the setting of associative rings. The properties of the corresponding generalization of the homological theory are, perhaps, less straightforward and have, in any event, been poorly understood. I will report on recent progress in this direction. The talk is based on joint work with Olgur Celikbas, Li Liang, and Grep Piepmeyer.
Vlad Matei
In 2012, J.P Keating and Z. Rudnick published a paper where they resolved a function field version of the Montgomery-Goldston pair correlation conjecture. Their proof relies on a recent equidistribution result of N. Katz. In joint work with Daniel Hast, we reprove their result by counting points on a certain variety using a twisted Grothendieck-Lefschetz formula and obtain also information about higher moments. Moreover our method allows us to also give a proof of the autocorrelation of the Mobius function on average in the function field setting, also known as the Chowla conjecture.