Colloquia/Fall18: Difference between revisions
No edit summary |
No edit summary |
||
Line 22: | Line 22: | ||
|September 19 | |September 19 | ||
|[http://www.mast.queensu.ca/~ggsmith/ Greg Smith] (Queen's University) | |[http://www.mast.queensu.ca/~ggsmith/ Greg Smith] (Queen's University) | ||
| | |Nonnegative sections and sums of squares | ||
|Erman | |Erman | ||
|- | |- | ||
Line 88: | Line 88: | ||
== Abstracts == | == Abstracts == | ||
===September 19: Gregory G. Smith (Queen's University)=== | |||
''Nonnegative sections and sums of squares'' | |||
A polynomial with real coefficients is nonnegative if it takes on only nonnegative values. For example, any sum of squares is obviously nonnegative. For a homogeneous polynomial with respect to the standard grading, Hilbert famously characterized when the converse holds, that is when every nonnegative homogeneous polynomial is a sum of squares. After reviewing some history of this problem, we will examine this converse in more general settings such as global sections of a line bundles. This line of inquiry has unexpected connections to classical algebraic geometry and leads to new examples in which every nonnegative homogeneous polynomial is a sum of squares. This talk is based on joint work with Grigoriy Blekherman and Mauricio Velasco. | |||
===October 3: Pham Huu Tiep (Arizona)=== | ===October 3: Pham Huu Tiep (Arizona)=== |
Revision as of 21:36, 4 September 2014
Mathematics Colloquium
All colloquia are on Fridays at 4:00 pm in Van Vleck B239, unless otherwise indicated.
Tentative schedule for Spring 2015
Fall 2014
date | speaker | title | host(s) |
---|---|---|---|
September 12 | Moon Duchin (Tufts University) | TBA | Dymarz and WIMAW |
September 19 | Greg Smith (Queen's University) | Nonnegative sections and sums of squares | Erman |
September 26 | Jack Xin (UC Irvine) | TBA | Jin |
October 3 | Pham Huu Tiep (University of Arizona) | Adequate subgroups | Gurevich |
October 10 | Alejandro Adem (UBC) | TBA | Yang |
October 17 | Tentatively reserved until 9/5 | Stovall | |
October 24 | Almut Burchard (University of Toronto) | TBA | Stovall |
October 31 | Bao Chau Ngo (University of Chicago) | TBA | Gurevich |
November 7 | Reserved for possible job interview | ||
November 14 | Reserved for possible job interview | ||
November 21 | Reserved for possible job interview | ||
November 28 | University holiday | ||
December 5 | Reserved for possible job interview | ||
December 12 | Reserved for possible job interview |
Abstracts
September 19: Gregory G. Smith (Queen's University)
Nonnegative sections and sums of squares
A polynomial with real coefficients is nonnegative if it takes on only nonnegative values. For example, any sum of squares is obviously nonnegative. For a homogeneous polynomial with respect to the standard grading, Hilbert famously characterized when the converse holds, that is when every nonnegative homogeneous polynomial is a sum of squares. After reviewing some history of this problem, we will examine this converse in more general settings such as global sections of a line bundles. This line of inquiry has unexpected connections to classical algebraic geometry and leads to new examples in which every nonnegative homogeneous polynomial is a sum of squares. This talk is based on joint work with Grigoriy Blekherman and Mauricio Velasco.
October 3: Pham Huu Tiep (Arizona)
Adequate subgroups
The notion of adequate subgroups was introduced by Thorne. It is a weakening of the notion of big subgroups used in generalizations of the Taylor-Wiles method for proving the automorphy of certain Galois representations. Using this idea, Thorne was able to strengthen many automorphy lifting theorems. It was shown recently by Guralnick, Herzig, Taylor, and Thorne that if the degree is small compared to the characteristic then all absolutely irreducible representations are adequate. We will discuss extensions of this result obtained recently in joint work with R. M. Guralnick and F. Herzig. In particular, we show that almost all absolutely irreducible representations in characteristic p of degree less than p are adequate. We will also address a question of Serre about indecomposable modules in characteristic p of dimension less than 2p-2.