NTSGrad Fall 2015/Abstracts: Difference between revisions

From DEV UW-Math Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 63: Line 63:
<br>
<br>


== Sep 30 DATE ==
== Sep 30 ==


<center>
<center>
Line 95: Line 95:
<br>
<br>


== MONTH DATE ==
== Oct 14 ==


<center>
<center>
Line 111: Line 111:
<br>
<br>


== MONTH DATE ==
== Oct 21 ==


<center>
<center>
Line 127: Line 127:
<br>
<br>


== MONTH DATE ==
== Oct 28 ==


<center>
<center>
Line 143: Line 143:
<br>
<br>


== MONTH DATE ==
== Nov 04 ==


<center>
<center>
Line 159: Line 159:
<br>
<br>


== MONTH DATE ==
== Nov 11 ==


<center>
<center>
Line 175: Line 175:
<br>
<br>


== MONTH DATE ==
== Nov 18 ==


<center>
<center>
Line 191: Line 191:
<br>
<br>


== MONTH DATE ==
== Nov 25 ==
 
<center>
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
|-
| bgcolor="#F0A0A0" align="center" style="font-size:125%" | '''SPEAKER'''
|-
| bgcolor="#BCD2EE"  align="center" | TITLE
|-
| bgcolor="#BCD2EE"  | 
ABSTRACT
|}                                                                       
</center>
 
<br>
 
== Dec 02 ==
 
<center>
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
|-
| bgcolor="#F0A0A0" align="center" style="font-size:125%" | '''SPEAKER'''
|-
| bgcolor="#BCD2EE"  align="center" | TITLE
|-
| bgcolor="#BCD2EE"  | 
ABSTRACT
|}                                                                       
</center>
 
<br>
 
== Dec 09 ==


<center>
<center>

Revision as of 19:53, 27 August 2014

Sep 02

Lalit Jain
Monodromy computations in topology and number theory

The monodromy of a family of varieties is a measure of how homology classes vary. Surprisingly, many familiar ideas in number theory, such as Galois representations and Cohen-Lenstra heuristics, are closely linked to monodromy of specific families. In this talk I will define monodromy, explain some number theoretic applications, and describe original work of computing monodromy for moduli spaces of covers of the projective line (Hurwitz spaces). This work generalizes previous results of Achter-Pries, Yu and Hall on hyperelliptic families. Only basic knowledge of algebraic topology and number theory is required.


Sep 09

SPEAKER
TITLE

ABSTRACT


Sep 16

SPEAKER
TITLE

ABSTRACT


Sep 23

SPEAKER
TITLE

ABSTRACT


Sep 30

SPEAKER
TITLE

ABSTRACT


Oct 07

SPEAKER
TITLE

ABSTRACT


Oct 14

SPEAKER
TITLE

ABSTRACT


Oct 21

SPEAKER
TITLE

ABSTRACT


Oct 28

SPEAKER
TITLE

ABSTRACT


Nov 04

SPEAKER
TITLE

ABSTRACT


Nov 11

SPEAKER
TITLE

ABSTRACT


Nov 18

SPEAKER
TITLE

ABSTRACT


Nov 25

SPEAKER
TITLE

ABSTRACT


Dec 02

SPEAKER
TITLE

ABSTRACT


Dec 09

SPEAKER
TITLE

ABSTRACT



Organizer contact information

Sean Rostami (srostami@math.wisc.edu)



Return to the Number Theory Graduate Student Seminar Page

Return to the Number Theory Seminar Page

Return to the Algebra Group Page