NTS Fall 2012/Abstracts: Difference between revisions

From DEV UW-Math Wiki
Jump to navigation Jump to search
(add abstract for Nigel's talk)
Line 1: Line 1:
== September 6 ==
== September 13 ==
 
<center>
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
|-
| bgcolor="#F0A0A0" align="center" style="font-size:125%" | '''Nigel Boston''' (UW–Madison)
|-
| bgcolor="#BCD2EE"  align="center" | Title: Non-abelian Cohen–Lenstra heuristics
|-
| bgcolor="#BCD2EE"  | 
Abstract: In 1983, Cohen and Lenstra observed that the frequency with which a given abelian ''p''-group ''A'' (''p'' odd) arises as the ''p''-class group of an imaginary quadratic field ''K'' is apparently proportional to 1/|Aut(''A'')|. The group ''A'' is isomorphic to the Galois group of the maximal unramified abelian ''p''-extension of ''K''. In work with Michael Bush and Farshid Hajir, I generalized this to non-abelian unramified ''p''-extensions of imaginary quadratic fields. I shall recall all the above and describe a further generalization to non-abelian unramified ''p''-extensions of ''H''-extensions of '''Q''', for any ''p'', ''H'', where ''p'' does not divide the order of ''H''.
|}                                                                       
</center>
 
<br>
 
== September 20 ==


<center>
<center>
Line 15: Line 31:
<br>
<br>


== September 13 ==
== September 27 ==


<center>
<center>
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
|-
|-
| bgcolor="#F0A0A0" align="center" style="font-size:125%" | '''Who?''' (Where?)
| bgcolor="#F0A0A0" align="center" style="font-size:125%" | '''Jordan Ellenberg''' (UW–Madison)
|-
|-
| bgcolor="#BCD2EE"  align="center" | Title: tba
| bgcolor="#BCD2EE"  align="center" | Title: tba
Line 30: Line 46:


<br>
<br>
<!--
<!--
== February 23 ==
== February 23 ==

Revision as of 17:10, 6 September 2012

September 13

Nigel Boston (UW–Madison)
Title: Non-abelian Cohen–Lenstra heuristics

Abstract: In 1983, Cohen and Lenstra observed that the frequency with which a given abelian p-group A (p odd) arises as the p-class group of an imaginary quadratic field K is apparently proportional to 1/|Aut(A)|. The group A is isomorphic to the Galois group of the maximal unramified abelian p-extension of K. In work with Michael Bush and Farshid Hajir, I generalized this to non-abelian unramified p-extensions of imaginary quadratic fields. I shall recall all the above and describe a further generalization to non-abelian unramified p-extensions of H-extensions of Q, for any p, H, where p does not divide the order of H.


September 20

Who? (Where?)
Title: tba

Abstract: tba


September 27

Jordan Ellenberg (UW–Madison)
Title: tba

Abstract: tba




Organizer contact information

Robert Harron

Zev Klagsbrun

Sean Rostami


Return to the Number Theory Seminar Page

Return to the Algebra Group Page