Applied/ACMS: Difference between revisions

From DEV UW-Math Wiki
Jump to navigation Jump to search
Line 25: Line 25:
| Feb 9
| Feb 9
|[https://users.flatironinstitute.org/~sweady/ Scott Weady] (Flatiron Institute)
|[https://users.flatironinstitute.org/~sweady/ Scott Weady] (Flatiron Institute)
|''[[Applied/ACMS/absS24#Scott Weady (Flatiron Institute)|TBA]]''
|''[[Applied/ACMS/absS24#Scott Weady (Flatiron Institute)|Entropy methods in active suspensions]]''
|Saverio and Laurel
|Saverio and Laurel
|-
|-

Revision as of 16:05, 26 January 2024


Applied and Computational Mathematics Seminar


Spring 2024

date speaker title host(s)
Feb 2 Chris Rycroft (UW) The reference map technique for simulating complex materials and multi-body interactions
Feb 9 Scott Weady (Flatiron Institute) Entropy methods in active suspensions Saverio and Laurel
Feb 16 David Saintillan (UC San Diego) TBA Saverio and Tom
Feb 23 Rose Cersonsky (UW) TBA Chris
Mar 1 [4:00pm Colloquium] Per-Gunnar Martinsson (UT Austin) TBA Li
Mar 8
Mar 15 Di Qi (Purdue University) TBA Chen
Mar 22
Mar 29 Spring break
Apr 5 Jinlong Wu (UW) TBA Saverio
Apr 12 Gabriel Zayas-Caban (UW) TBA Li
Apr 19 Tony Kearsley (NIST) TBA Fabien
Apr 26 Malgorzata Peszynska (Oregon State) TBA Fabien

Abstracts

Chris Rycroft (UW–Madison)

Title: The reference map technique for simulating complex materials and multi-body interactions

Conventional computational methods often create a dilemma for fluid–structure interaction problems. Typically, solids are simulated using a Lagrangian approach with grid that moves with the material, whereas fluids are simulated using an Eulerian approach with a fixed spatial grid, requiring some type of interfacial coupling between the two different perspectives. Here, a fully Eulerian method for simulating structures immersed in a fluid will be presented [1]. By introducing a reference map variable to model finite-deformation constitutive relations in the structures on the same grid as the fluid, the interfacial coupling problem is highly simplified. The method is particularly well suited for simulating soft, highly-deformable materials and many-body contact problems [2], and several examples in two and three dimensions [3] will be presented.

  1. K. Kamrin, C. H. Rycroft, and J.-C. Nave, J. Mech. Phys. Solids 60, 1952–1969 (2012). [DOI link]
  2. C. H. Rycroft et al., J. Fluid Mech. 898, A9 (2020). [DOI link]
  3. Y. L. Lin, N. J. Derr, and C. H. Rycroft, Proc. Natl. Acad. Sci. 119, e2105338118 (2022). [DOI link]

Future semesters

Archived semesters



Return to the Applied Mathematics Group Page