Graduate Logic Seminar: Difference between revisions

From DEV UW-Math Wiki
Jump to navigation Jump to search
Line 41: Line 41:


=== '''October 2 - Hongyu Zhu''' ===
=== '''October 2 - Hongyu Zhu''' ===
'''Title:''' Continuum Hypothesis: On Platonism and Pluralism
'''Title:''' Continuum Hypothesis: On Platonism and Pluralism ([https://wiki.math.wisc.edu/images/CH.pdf Slides])


'''Abstract:''' Despite its independence from ZFC, the continuum hypothesis continues to be of interest to logicians. In this talk, we will see arguments for settling the truth of CH in one way or another (or yet another). We will see how mathematical arguments (the inner model program) are intertwined with philosophical beliefs (mathematical Platonism and pluralism) about the set-theoretic universe(s).
'''Abstract:''' Despite its independence from ZFC, the continuum hypothesis continues to be of interest to logicians. In this talk, we will see arguments for settling the truth of CH in one way or another (or yet another). We will see how mathematical arguments (the inner model program) are intertwined with philosophical beliefs (mathematical Platonism and pluralism) about the set-theoretic universe(s).

Revision as of 22:21, 2 October 2023

The Graduate Logic Seminar is an informal space where graduate students and professors present topics related to logic which are not necessarily original or completed work. This is a space focused principally on practicing presentation skills or learning materials that are not usually presented in a class.

The talk schedule is arranged at the beginning of each semester. If you would like to participate, please contact one of the organizers.

Sign up for the graduate logic seminar mailing list: join-grad-logic-sem@lists.wisc.edu

Fall 2023

The seminar will be run as a 1-credit seminar Math 975 in Fall 2023. If you are not enrolled but would like to audit it, please contact Uri Andrews and Hongyu Zhu.

While you are welcome (and encouraged) to present on a topic of your own choice, feel free to ask for help from faculties and/or other graduate students.

Presentation Schedule: https://docs.google.com/spreadsheets/d/15Qd4EzrrKpn1Ct5tur1P_FDc2czsdAVnUf_pfp65Lb4/edit?usp=sharing

Zoom link for remote attendance: https://uwmadison.zoom.us/j/96168027763?pwd=bGdvL3lpOGl6QndQcG5RTFUzY3JXQT09 (Meeting ID: 961 6802 7763, Password: 975f23)

Possible readings:

  • (Elementary) Proof Theory: Chapters 4-7 of Aspects of Incompleteness by Per Lindström.
  • An invitation to model-theoretic Galois theory. On arxiv here.
  • Variations on the Feferman-Vaught Theorem On arxiv here.
  • Any of several papers on "Turing Computable Embeddings"
  • Computability/Model/Set Theory: Consult faculties/students for recommended texts on specific areas.

September 11 - Organizational Meeting

We will meet to assign speakers to dates.

September 18 - Taeyoung Em

Title: Explicit construction of non-quasidetermined game on [math]\displaystyle{ \mathcal P(2^{\mathbb N}) }[/math] without using A.C. (Supplement)

Abstract: We will go over briefly some basic information about trees and infinite games. Then we prove the Gale-Stewart Theorem. The proof of the theorem motivates definition of quasistrategy. Then we will briefly introduce Borel determinacy. We will go over how the usage of A.C. makes convenient for us to make a non-quasidetermined or undertermined game. We will give an explicit construction of a non-quasidetermined game on [math]\displaystyle{ \mathcal P(2^{\mathbb N}) }[/math] without using A.C.

September 25 - Karthik Ravishankar

Title: Spectra of structures

Abstract: One way to measure the complexity of a structure is via its spectrum - the set of Turing degrees of its copies. In this talk, we'll look at the definition and first properties of the spectrum followed by some examples. In particular, we'll show that the non-computable degrees and the hyperimmune degrees form a spectrum while the DNC degrees do not.

October 2 - Hongyu Zhu

Title: Continuum Hypothesis: On Platonism and Pluralism (Slides)

Abstract: Despite its independence from ZFC, the continuum hypothesis continues to be of interest to logicians. In this talk, we will see arguments for settling the truth of CH in one way or another (or yet another). We will see how mathematical arguments (the inner model program) are intertwined with philosophical beliefs (mathematical Platonism and pluralism) about the set-theoretic universe(s).


Previous Years

The schedule of talks from past semesters can be found here.