NTS ABSTRACTSpring2023: Difference between revisions

From DEV UW-Math Wiki
Jump to navigation Jump to search
(Created page with "== Feb 02 == <center> {| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20" |- | bgcolor="#F0A0A0" align="center" style="font...")
 
Line 14: Line 14:


''Zoom ID: 93014934562 Password: The order of A9 (the alternating group of 9 elements)''
''Zoom ID: 93014934562 Password: The order of A9 (the alternating group of 9 elements)''
|}                                                                       
</center>
<br>
== Feb 09 ==
<center>
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
|-
| bgcolor="#F0A0A0" align="center" style="font-size:125%" | '''Asvin Gothandaraman'''
|-
| bgcolor="#BCD2EE"  align="center" |  MSRI/SLMath workshop
|-
| bgcolor="#BCD2EE"  |
NTS of the week is cancelled as most of the number theory group are attending the MSRI/SLMath introductory workshop on Diophantine geometry, see https://www.msri.org/workshops/977 


|}                                                                         
|}                                                                         

Revision as of 16:37, 6 February 2023

Feb 02

Asvin Gothandaraman
The Tate conjecture for h^{2, 0} = 1 varieties over finite fields

We (Asvin G, Yifan Wei and John Yin) define a notion of splitting density for "nice" generically finite maps over p-adic fields and show that these densities satisfy a functional equation. As a consequence, we prove a conjecture about factorization probabilities of Bhargava, Cremona, Fisher, Gajovic.


Zoom ID: 93014934562 Password: The order of A9 (the alternating group of 9 elements)



Feb 09

Asvin Gothandaraman
MSRI/SLMath workshop

NTS of the week is cancelled as most of the number theory group are attending the MSRI/SLMath introductory workshop on Diophantine geometry, see https://www.msri.org/workshops/977