NTSGrad Fall 2022/Abstracts: Difference between revisions

From DEV UW-Math Wiki
Jump to navigation Jump to search
(→‎9/13: Added Title and Abstract for 9/13 talk)
(→‎9/20: Added Title and Abstract for 9/20 talk)
Line 22: Line 22:
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
|-
|-
| bgcolor="#F0A0A0" align="center" style="font-size:125%" | ''' '''
| bgcolor="#F0A0A0" align="center" style="font-size:125%" | '''Jiaqi HOu'''
|-
|-
| bgcolor="#BCD2EE"  align="center" | ''TBA''
| bgcolor="#BCD2EE"  align="center" | Poincare series and Petersson trace formula
|-
|-
| bgcolor="#BCD2EE"  |  
| bgcolor="#BCD2EE"  | I will talk about the Poincare series, which are basic examples of modular forms, and the Petersson trace formula for SL(2,Z). Then I will discuss some applications of Petersson's formula.
|}                                                                         
|}                                                                         
</center>
</center>

Revision as of 16:13, 19 September 2022

This page contains the titles and abstracts for talks scheduled in the Spring 2022 semester. To go back to the main GNTS page, click here.


9/13

Ivan Aidun
A Case Study in the Analogy Between Z and F_q[t]
An influential concept in modern number theory is the idea that the integers Z and the ring of polynomials over a finite field F_q[t] share many traits.  In this talk, I will discuss some particular examples of how this analogy can work, focusing on zeta functions and counting problems.  No prior familiarity will be required!


9/20

Jiaqi HOu
Poincare series and Petersson trace formula
I will talk about the Poincare series, which are basic examples of modular forms, and the Petersson trace formula for SL(2,Z). Then I will discuss some applications of Petersson's formula.


9/27

TBA
TBA


10/4

TBA
TBA


10/11

TBA
TBA


10/11

TBA
TBA


10/18

TBA
TBA


10/25

TBA
TBA


11/1

TBA
TBA


11/8

TBA
TBA


11/15

TBA
TBA


11/22

TBA
TBA


11/29

TBA
TBA


12/6

TBA
TBA


12/13

TBA
TBA