NTS/Abstracts Spring 2011: Difference between revisions
No edit summary |
No edit summary |
||
Line 153: | Line 153: | ||
<br> | <br> | ||
== | == Frank Thorne == | ||
<center> | <center> | ||
Line 166: | Line 166: | ||
<br> | <br> | ||
== | == Rafe Jones == | ||
<center> | <center> | ||
Line 179: | Line 179: | ||
<br> | <br> | ||
== | == Liang Xiao == | ||
<center> | <center> | ||
Line 190: | Line 190: | ||
|} | |} | ||
</center> | </center> | ||
== Winnie Li == | |||
<center> | |||
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20" | |||
|- | |||
| bgcolor="#DDDDDD" align="center"| Title: TBA | |||
|- | |||
| bgcolor="#DDDDDD"| | |||
Abstract: TBA | |||
|} | |||
</center> | |||
<br> | <br> | ||
== Organizer contact information == | == Organizer contact information == |
Revision as of 05:50, 18 January 2011
Anton Gershaschenko
Title: Moduli of Representations of Unipotent Groups |
Abstract: Representations of reductive groups are discretely parameterized, but unipotent groups can have non-trivial families of representations, so it makes sense try to construct and understand a moduli stack (or space) of representations of a given unipotent group. If you restrict to certain kinds of representations, it is possible to actually get your hands on the moduli stack and to construct a moduli space. I'll summarize the few things I know about the general case and then give you a tour of some interesting features that appear in small examples. |
Keerthi Madapusi
Title: A rationality property of Hodge cycles on abelian varieties, with an application to arithmetic compactifications of Shimura varieties |
Abstract: TBA |
Bei Zhang
Title: p-adic L-function of automorphic form of GL(2) |
Abstract: Modular symbol is used to construct p-adic L-functions associated to a modular form. In this talk, I will explain how to generalize this powerful tool to the construction of p-adic L-functions attached to an automorphic representation on GL_{2}(A) where A is the ring of adeles over a number field. This is a joint work with Matthew Emerton. |
David Brown
Title: Explicit modular approaches to generalized Fermat equations |
Abstract: TBA |
Tony Várilly-Alvarado
Title: TBA |
Abstract: TBA |
Wei Ho
Title: TBA |
Abstract: TBA |
Rob Rhoades
Title: TBA |
Abstract: TBA |
TBA
Title: TBA |
Abstract: TBA |
Chris Davis
Title: TBA |
Abstract: TBA |
Andrew Obus
Title: Cyclic Extensions and the Local Lifting Problem |
Abstract: TBA |
Bianca Viray
Title: TBA |
Abstract: TBA |
Frank Thorne
Title: TBA |
Abstract: TBA |
Rafe Jones
Title: TBA |
Abstract: TBA |
Liang Xiao
Title: TBA |
Abstract: TBA |
Winnie Li
Title: TBA |
Abstract: TBA |
Organizer contact information
Return to the Number Theory Seminar Page
Return to the Algebra Group Page