NTS/Abstracts Spring 2011: Difference between revisions

From DEV UW-Math Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 65: Line 65:
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
|-
|-
| bgcolor="#DDDDDD" align="center"| Title: Explicit modular approaches to generalized Fermat equations
| bgcolor="#DDDDDD" align="center"| Title: TBA 
|-
|-
| bgcolor="#DDDDDD"|   
| bgcolor="#DDDDDD"|   
Line 72: Line 72:
</center>
</center>


<br>
== TBA ==
== TBA ==


Line 77: Line 78:
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
|-
|-
| bgcolor="#DDDDDD" align="center"| Title: Explicit modular approaches to generalized Fermat equations
| bgcolor="#DDDDDD" align="center"| Title: TBA 
|-
|-
| bgcolor="#DDDDDD"|   
| bgcolor="#DDDDDD"|   
Line 84: Line 85:
</center>
</center>


<br>
== TBA ==
== TBA ==


Line 89: Line 91:
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
|-
|-
| bgcolor="#DDDDDD" align="center"| Title: Explicit modular approaches to generalized Fermat equations
| bgcolor="#DDDDDD" align="center"| Title: TBA 
|-
|-
| bgcolor="#DDDDDD"|   
| bgcolor="#DDDDDD"|   
Line 96: Line 98:
</center>
</center>


<br>
== TBA ==
== TBA ==


Line 101: Line 104:
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
|-
|-
| bgcolor="#DDDDDD" align="center"| Title: Explicit modular approaches to generalized Fermat equations
| bgcolor="#DDDDDD" align="center"| Title: TBA 
|-
|-
| bgcolor="#DDDDDD"|   
| bgcolor="#DDDDDD"|   
Line 108: Line 111:
</center>
</center>


<br>
== TBA ==
== TBA ==


Line 113: Line 117:
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
|-
|-
| bgcolor="#DDDDDD" align="center"| Title: Explicit modular approaches to generalized Fermat equations
| bgcolor="#DDDDDD" align="center"| Title: TBA 
|-
|-
| bgcolor="#DDDDDD"|   
| bgcolor="#DDDDDD"|   
Line 120: Line 124:
</center>
</center>


<br>
== TBA ==
== TBA ==


Line 125: Line 130:
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
|-
|-
| bgcolor="#DDDDDD" align="center"| Title: Explicit modular approaches to generalized Fermat equations
| bgcolor="#DDDDDD" align="center"| Title: TBA 
|-
|-
| bgcolor="#DDDDDD"|   
| bgcolor="#DDDDDD"|   
Line 132: Line 137:
</center>
</center>


<br>
== TBA ==
== TBA ==


Line 137: Line 143:
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
|-
|-
| bgcolor="#DDDDDD" align="center"| Title: Explicit modular approaches to generalized Fermat equations
| bgcolor="#DDDDDD" align="center"| Title: TBA 
|-
|-
| bgcolor="#DDDDDD"|   
| bgcolor="#DDDDDD"|   
Line 144: Line 150:
</center>
</center>


<br>
== TBA ==
== TBA ==


Line 149: Line 156:
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
|-
|-
| bgcolor="#DDDDDD" align="center"| Title: Explicit modular approaches to generalized Fermat equations
| bgcolor="#DDDDDD" align="center"| Title: TBA 
|-
|-
| bgcolor="#DDDDDD"|   
| bgcolor="#DDDDDD"|   
Line 156: Line 163:
</center>
</center>


<br>
== TBA ==
== TBA ==


Line 161: Line 169:
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
|-
|-
| bgcolor="#DDDDDD" align="center"| Title: Explicit modular approaches to generalized Fermat equations
| bgcolor="#DDDDDD" align="center"| Title: TBA 
|-
|-
| bgcolor="#DDDDDD"|   
| bgcolor="#DDDDDD"|   
Line 168: Line 176:
</center>
</center>


<br>
== TBA ==
== TBA ==


Line 173: Line 182:
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
|-
|-
| bgcolor="#DDDDDD" align="center"| Title: Explicit modular approaches to generalized Fermat equations
| bgcolor="#DDDDDD" align="center"| Title: TBA 
|-
|-
| bgcolor="#DDDDDD"|   
| bgcolor="#DDDDDD"|   
Line 179: Line 188:
|}                                                                         
|}                                                                         
</center>
</center>


<br>
<br>

Revision as of 05:36, 18 January 2011

Anton Gershaschenko

Title: Moduli of Representations of Unipotent Groups

Abstract: Representations of reductive groups are discretely parameterized, but unipotent groups can have non-trivial families of representations, so it makes sense try to construct and understand a moduli stack (or space) of representations of a given unipotent group. If you restrict to certain kinds of representations, it is possible to actually get your hands on the moduli stack and to construct a moduli space. I'll summarize the few things I know about the general case and then give you a tour of some interesting features that appear in small examples.


Keerthi Madapusi

Title: A rationality property of Hodge cycles on abelian varieties, with an application to arithmetic compactifications of Shimura varieties

Abstract: TBA


Bei Zhang

Title: p-adic L-function of automorphic form of GL(2)

Abstract: Modular symbol is used to construct p-adic L-functions associated to a modular form. In this talk, I will explain how to generalize this powerful tool to the construction of p-adic L-functions attached to an automorphic representation on GL_{2}(A) where A is the ring of adeles over a number field. This is a joint work with Matthew Emerton.


David Brown

Title: Explicit modular approaches to generalized Fermat equations

Abstract: TBA



TBA

Title: TBA

Abstract: TBA


TBA

Title: TBA

Abstract: TBA


TBA

Title: TBA

Abstract: TBA


TBA

Title: TBA

Abstract: TBA


TBA

Title: TBA

Abstract: TBA


TBA

Title: TBA

Abstract: TBA


TBA

Title: TBA

Abstract: TBA


TBA

Title: TBA

Abstract: TBA


TBA

Title: TBA

Abstract: TBA


TBA

Title: TBA

Abstract: TBA


Organizer contact information

David Brown:

Bryden Cais:




Return to the Number Theory Seminar Page

Return to the Algebra Group Page