Madison Math Circle Abstracts: Difference between revisions

From DEV UW-Math Wiki
Jump to navigation Jump to search
Line 164: Line 164:


= High School Meetings =
= High School Meetings =
==September 28 2015==
<center>
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
|-
| bgcolor="#e8b2b2" align="center" style="font-size:125%" | '''Prof. Daniel Erman'''
|-
| bgcolor="#BDBDBD"  align="center" | '''Title: How to Catch a (Data) Thief'''
|-
| bgcolor="#BDBDBD"  | 
I will discuss some surprising statistical facts that have been used to catch companies that lie about data.
|}                                                                       
</center>
==October 19 2015==
<center>
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
|-
| bgcolor="#e8b2b2" align="center" style="font-size:125%" | '''Carolyn Abbott'''
|-
| bgcolor="#BDBDBD"  align="center" | '''Title: Donuts and coffee cups: the topology of surfaces'''
|-
| bgcolor="#BDBDBD"  | 
A classic problem in topology is to decide whether one surfaces can be deformed into another, without creating any holes or connecting any new points (stretching and bending is allowed!).  If you can do so, such surfaces are considered 'the same.' We will formalize this notion and classify all closed surfaces, along the way answering such questions as whether a coffee cup is the same as a donut.
|}                           
</center>
==February 22 2016==
<center>
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
|-
| bgcolor="#e8b2b2" align="center" style="font-size:125%" | '''Jordan Ellenberg'''
|-
| bgcolor="#BDBDBD"  align="center" | '''Title: The Game of Set'''
|-
| bgcolor="#BDBDBD"  | 
TBD
|}                           
</center>
==March 31 2016==
<center>
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
|-
| bgcolor="#e8b2b2" align="center" style="font-size:125%" | '''Daniel Erman'''
|-
| bgcolor="#BDBDBD"  align="center" | '''Title: How to catch a (data) thief'''
|-
| bgcolor="#BDBDBD"  | 
I will discuss some surprising statistical facts that have been used to catch companies that lie about data.
|}                           
</center>
==April 18 2016==
<center>
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
|-
| bgcolor="#e8b2b2" align="center" style="font-size:125%" | '''DJ Bruce'''
|-
| bgcolor="#BDBDBD"  align="center" | '''Title: To Infinity and Beyond'''
|-
| bgcolor="#BDBDBD"  | 
1, 2, 3,..., infinity? What is infinity? Is infinity plus one bigger than infinity? Beginning by figuring out what we mean when we say to collections of objects have the same number of things we will slowly work our way deep into the garden of infinity. A garden that is often profoundly strange and filled with quite a few surprising snakes.
|}                           
</center>
==April 21 2016==
<center>
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
|-
| bgcolor="#e8b2b2" align="center" style="font-size:125%" | '''DJ Bruce'''
|-
| bgcolor="#BDBDBD"  align="center" | '''Title: Can you untie a know with a knot'''
|-
| bgcolor="#BDBDBD"  | 
Is it possible to tie two knots on a rope such that when you slide them together they unknot themselves? The answer turns out to be interesting, and related to the sum
1-1+1-1+1-1+...
|}                           
</center>
==April 21 2016==
<center>
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
|-
| bgcolor="#e8b2b2" align="center" style="font-size:125%" | '''DJ Bruce'''
|-
| bgcolor="#BDBDBD"  align="center" | '''Title: Can you untie a know with a knot'''
|-
| bgcolor="#BDBDBD"  | 
Is it possible to tie two knots on a rope such that when you slide them together they unknot themselves? The answer turns out to be interesting, and related to the sum
1-1+1-1+1-1+...
|}                           
</center>
==May 2 2016==
<center>
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
|-
| bgcolor="#e8b2b2" align="center" style="font-size:125%" | '''DJ Bruce'''
|-
| bgcolor="#BDBDBD"  align="center" | '''Title: Is any knot not the unknot?'''
|-
| bgcolor="#BDBDBD"  | 
You're walking home from school, and you pull out your head phones to listen to some tunes. However, inevitably they are a horribly tangled mess, but are they really a knot? We'll talk about what exactly is a knot, and how we can tell when something is not the unknot.
|}                           
</center>

Revision as of 16:53, 5 August 2016

Logo.png

August 6 2016

Science Saturday
Title: Game Busters

The goal of our station will be to explore the mathematics related to the games: Set, Nim, and Chomp. We will have stations where individuals can drop by play a few games and explore these games for themselves. (We will have worksheets and volunteers providing guidance.) Additionally, anyone will be able to challenge our Master of Nim with fun prizes available for beating them. (Note: This is at a special time and location.)

September 12 2016

TDB
Title: TBD

TBD

September 19 2016

TBD
Title: TBD

TBD

September 26 2016

TBD
Title: TBD

TBD

October 3 2016

TBD
Title: TBD

TBD


October 10 2016

TBD
Title: TBD

TBD

October 17 2016

TBD
Title: TBD

TBD

October 24 2016

TBD
Title: TBD

TBD

October 31 2016

n/a
Title: No Meeting

Enjoy Halloween.

November 7 2016

TBD
Title: TBD

TBD

November 14 2016

TBD
Title: TBD

TBD

November 21 2016

TBD
Title: TBD

TBD

High School Meetings