Graduate Algebraic Geometry Seminar Fall 2017: Difference between revisions

From DEV UW-Math Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 51: Line 51:
|-
|-
| bgcolor="#E0E0E0"| September 2
| bgcolor="#E0E0E0"| September 2
| bgcolor="#C6D46E"| Ed Dewey
| bgcolor="#C6D46E"| TBD
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#September 2| A^1 homotopy theory and rank-2 vector Bundles on smooth affine surfaces]]
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#September 2| TBD]]
|-
|-
| bgcolor="#E0E0E0"| September 9
| bgcolor="#E0E0E0"| September 9
| bgcolor="#C6D46E"| No one
| bgcolor="#C6D46E"| TBD
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#September 9| No Talk ]]
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#September 9| TBD ]]
|-
|-
| bgcolor="#E0E0E0"| September 16
| bgcolor="#E0E0E0"| September 16
| bgcolor="#C6D46E"| Ed Dewey
| bgcolor="#C6D46E"| TBD
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#September 9| A^1 homotopy theory and rank-2 vector Bundles on smooth affine surfaces (cont.) ]]
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#September 9| TBD ]]
|-
|-
| bgcolor="#E0E0E0"| September 23   
| bgcolor="#E0E0E0"| September 23   
| bgcolor="#C6D46E"| DJ Bruce
| bgcolor="#C6D46E"| TBD
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#September 16| The Ring ]]  
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#September 16| TBD ]]  
|-
|-
| bgcolor="#E0E0E0"| September 30
| bgcolor="#E0E0E0"| September 30
| bgcolor="#C6D46E"| DJ Bruce
| bgcolor="#C6D46E"| TBD
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#September 23| The Ring (cont). ]]  
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#September 23| TBD ]]  
|-
|-
| bgcolor="#E0E0E0"| October 7
| bgcolor="#E0E0E0"| October 7
| bgcolor="#C6D46E"| Zachary Charles
| bgcolor="#C6D46E"| TBD
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#October 7| An Introduction to Real Algebraic Geometry and the Real Spectrum]]  
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#October 7| TBD]]  
|-
|-
| bgcolor="#E0E0E0"| October 14
| bgcolor="#E0E0E0"| October 14
| bgcolor="#C6D46E"| Zachary Charles
| bgcolor="#C6D46E"| TBD
| bgcolor="#BCE2FE"| [[Graduate Algebraic Geometry Seminar#October 14| An Introduction to Real Algebraic Geometry and the Real Spectrum]]  
| bgcolor="#BCE2FE"| [[Graduate Algebraic Geometry Seminar#October 14| TBD]]  
|-
|-
| bgcolor="#E0E0E0"| October 21
| bgcolor="#E0E0E0"| October 21
| bgcolor="#C6D46E"| Eva Elduque
| bgcolor="#C6D46E"| TBD
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#October 21| Symplectic Geometry I]]  
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#October 21| TBD]]  
|-
|-
| bgcolor="#E0E0E0"| October 28
| bgcolor="#E0E0E0"| October 28
| bgcolor="#C6D46E"| Moisés Herradón
| bgcolor="#C6D46E"| TBD
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#October 28| Symplectic Geometry II]]  
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#October 28| TBD]]  
|-
|-
| bgcolor="#E0E0E0"| November 4
| bgcolor="#E0E0E0"| November 4
| bgcolor="#C6D46E"| Moisés Herradón
| bgcolor="#C6D46E"| TBD
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#November 4| Symplectic Geometry III]]  
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#November 4| TBD]]  
|-
|-
| bgcolor="#E0E0E0"| November 11
| bgcolor="#E0E0E0"| November 11
| bgcolor="#C6D46E"| Nathan Clement
| bgcolor="#C6D46E"| TBD
| bgcolor="#BCE2FE"| [[Graduate Algebraic Geometry Seminar#November 11| Moduli Spaces of Sheaves on Singular Curves]]   
| bgcolor="#BCE2FE"| [[Graduate Algebraic Geometry Seminar#November 11| TBD]]   
|-
|-
| bgcolor="#E0E0E0"| November 18
| bgcolor="#E0E0E0"| November 18
| bgcolor="#C6D46E"| Nathan Clement
| bgcolor="#C6D46E"| TBD
| bgcolor="#BCE2FE"| [[Graduate Algebraic Geometry Seminar#November 18| Moduli Spaces of Sheaves on Singular Curves]]   
| bgcolor="#BCE2FE"| [[Graduate Algebraic Geometry Seminar#November 18| TBD]]   
|-
|-
| bgcolor="#E0E0E0"| November 25
| bgcolor="#E0E0E0"| November 25
| bgcolor="#C6D46E"| No Seminar Thanksgiving
| bgcolor="#C6D46E"| TBD
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#November 25| TBD ]]  
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#November 25| TBD ]]  
|-
|-
| bgcolor="#E0E0E0"| December 2
| bgcolor="#E0E0E0"| December 2
| bgcolor="#C6D46E"| Jay Yang
| bgcolor="#C6D46E"| TBD
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#December 2| TBD ]]  
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#December 2| TBD ]]  
|-
|-
| bgcolor="#E0E0E0"| December 9
| bgcolor="#E0E0E0"| December 9
| bgcolor="#C6D46E"| Dima Arinkin
| bgcolor="#C6D46E"| TBD
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#December 9| Birational classification of surfaces]]  
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#December 9| TBD]]  
|-
|-
| bgcolor="#E0E0E0"| December 16
| bgcolor="#E0E0E0"| December 16
| bgcolor="#C6D46E"| Dima Arinkin
| bgcolor="#C6D46E"| TBD
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#December 16| TBD ]]  
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#December 16| TBD ]]  
|}
|}
Line 120: Line 120:
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
|-
|-
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Ed Dewey'''
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''TBD'''
|-
|-
| bgcolor="#BCD2EE"  align="center" | Title: A^1 homotopy theory and rank-2 vector bundles on smooth affine surfaces
| bgcolor="#BCD2EE"  align="center" | Title: TBD
|-
|-
| bgcolor="#BCD2EE"  |   
| bgcolor="#BCD2EE"  |   
Abstract: I will introduce the techniques used by Asok and Fasel to classify rank-2 vector bundles on a smooth affine 3-fold (arXiv:1204.0770).  The problem itself is interesting, and the solution uses the A^1 homotopy category.  My main goal is to make this category seem less bonkers.  
Abstract: TBD  
|}                                                                         
|}                                                                         
</center>
</center>
Line 133: Line 133:
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
|-
|-
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''No Talk'''
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''TBD'''
|-
|-
| bgcolor="#BCD2EE"  align="center" | Title: N/A
| bgcolor="#BCD2EE"  align="center" | Title: TBD
|-
|-
| bgcolor="#BCD2EE"  |   
| bgcolor="#BCD2EE"  |   
Abstract: There will be no GAG's talk this week as it conflicts with the computing workshop.
Abstract: TBD
|}                                                                         
|}                                                                         
</center>
</center>
Line 145: Line 145:
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
|-
|-
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Ed Dewey'''
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''TBD'''
|-
|-
| bgcolor="#BCD2EE"  align="center" | Title: A^1 homotopy theory and rank-2 vector bundles on smooth affine surfaces (cont).
| bgcolor="#BCD2EE"  align="center" | Title: TBD
|-
|-
| bgcolor="#BCD2EE"  |   
| bgcolor="#BCD2EE"  |   
Abstract: I will introduce the techniques used by Asok and Fasel to classify rank-2 vector bundles on a smooth affine 3-fold (arXiv:1204.0770).  The problem itself is interesting, and the solution uses the A^1 homotopy category.  My main goal is to make this category seem less bonkers.
Abstract: TBD
|}
|}
</center>
</center>
Line 158: Line 158:
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
|-
|-
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''DJ Bruce'''
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''TBD'''
|-
|-
| bgcolor="#BCD2EE"  align="center" | Title: The Ring
| bgcolor="#BCD2EE"  align="center" | Title: TBD
|-
|-
| bgcolor="#BCD2EE"  |   
| bgcolor="#BCD2EE"  |   
Abstract: The Grothendieck ring of varieties is an incredibly mysterious object that seems to capture a bunch of arithmetic, geometric, and topological data regarding algebraic varieties. We will explore some of these connections. For example, we will see how the Weil Conjectures are related to stable birational geometry. No background will be assumed and the speaker will try to keep things accessible to all.
Abstract: TBD
|}                                                                         
|}                                                                         
</center>
</center>
Line 170: Line 170:
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
|-
|-
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''DJ Bruce'''
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''TBD'''
|-
|-
| bgcolor="#BCD2EE"  align="center" | Title: The Ring (cont.)
| bgcolor="#BCD2EE"  align="center" | Title: TBD
|-
|-
| bgcolor="#BCD2EE"  |   
| bgcolor="#BCD2EE"  |   
Abstract: The Grothendieck ring of varieties is an incredibly mysterious object that seems to capture a bunch of arithmetic, geometric, and topological data regarding algebraic varieties. We will explore some of these connections. For example, we will see how the Weil Conjectures are related to stable birational geometry. No background will be assumed and the speaker will try to keep things accessible to all.
Abstract: TBD
|}                                                                         
|}                                                                         
</center>
</center>
Line 184: Line 184:
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Zachary Charles'''
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Zachary Charles'''
|-
|-
| bgcolor="#BCD2EE"  align="center" | Title: An Introduction to Real Algebraic Geometry and the Real Spectrum
| bgcolor="#BCD2EE"  align="center" | Title: TBD
|-
|-
| bgcolor="#BCD2EE"  |   
| bgcolor="#BCD2EE"  |   
Abstract: Algebraic geometry and the prime spectrum arose from the study of subsets of C^n defined by polynomial equations. In many areas, we are often interested in subsets of R^n defined by polynomial equations and inequalities. This gives rise to real algebraic geometry and the real spectrum. We will introduce the concept of the real spectrum and how it differs from the prime spectrum, as well as some aspects of real commutative algebra. We will use these to discuss and prove Hilbert's 17th problem and move on to real algebraic geometry. If time permits, we will discuss the null-, positiv-, and nichtnegativ- stellensatzes and semi-algebraic geometry. Practically no background is assumed.
Abstract: TBD
 
"Abstract: In ancient times, before the coming of \mathbf{C}, there was another field.  In the catacombs beneath Van Vleck, masked heresiarchs whisper eldrich conjectures about this shadowy object: that it was ordered, that it was not algebraically closed, and other perversions too horrible to name. 


But the ancients are dead, their cities are destroyed, and surely their secrets are lost to mankind forever....." ~Ed~
|}                                                                         
|}                                                                         
</center>
</center>
Line 199: Line 196:
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
|-
|-
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Zachary Charles'''
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''TBD'''
|-
|-
| bgcolor="#BCD2EE"  align="center" | Title: An Introduction to Real Algebraic Geometry and the Real Spectrum
| bgcolor="#BCD2EE"  align="center" | Title: TBD
|-
|-
| bgcolor="#BCD2EE"  |   
| bgcolor="#BCD2EE"  |   
Abstract: Algebraic geometry and the prime spectrum arose from the study of subsets of C^n defined by polynomial equations. In many areas, we are often interested in subsets of R^n defined by polynomial equations and inequalities. This gives rise to real algebraic geometry and the real spectrum. We will introduce the concept of the real spectrum and how it differs from the prime spectrum, as well as some aspects of real commutative algebra. We will use these to discuss and prove Hilbert's 17th problem and move on to real algebraic geometry. If time permits, we will discuss the null-, positiv-, and nichtnegativ- stellensatzes and semi-algebraic geometry. Practically no background is assumed.
Abstract: TBD
 
"Abstract: In ancient times, before the coming of \mathbf{C}, there was another field.  In the catacombs beneath Van Vleck, masked heresiarchs whisper eldrich conjectures about this shadowy object: that it was ordered, that it was not algebraically closed, and other perversions too horrible to name. 
 
But the ancients are dead, their cities are destroyed, and surely their secrets are lost to mankind forever....." ~Ed~
|}                                                                         
|}                                                                         
</center>
</center>
Line 216: Line 209:
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
|-
|-
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Eva Elduque'''
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''TBD'''
|-
|-
| bgcolor="#BCD2EE"  align="center" | Title: Symplectic Geometry I
| bgcolor="#BCD2EE"  align="center" | Title: TBD
|-
|-
| bgcolor="#BCD2EE"  |   
| bgcolor="#BCD2EE"  |   
Abstract:  "I seem to have committed myself to supplying abstracts.  Unfortunately there is nothing remotely funny about symplectic geometry.  I think I've never heard anything less intuitive than studying manifolds with symplectic 2-forms.  Nonetheless it seems to be totally central to both enumerative geometry and geometric representation theory.  Eva and Moises are going to take the bull by the horns and try to explain it to us. 
Abstract:  TBD
 
In order to give the bull a fighting chance, make sure not to let them get away with any "intuitive" remarks treating momenta as cotangent vectors.  I'm pretty sure no one has actually understood that since Hamilton."
 
~Ed~
 
|}                                                                         
|}                                                                         
</center>
</center>
Line 234: Line 222:
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
|-
|-
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Moisies Heradon'''
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''TBD'''
|-
|-
| bgcolor="#BCD2EE"  align="center" | Title: Symplectic Geometry II
| bgcolor="#BCD2EE"  align="center" | Title: TBD
|-
|-
| bgcolor="#BCD2EE"  |   
| bgcolor="#BCD2EE"  |   
Abstract:
Abstract: TBD
 
"When dynamics get hectic
 
For reasons symplectic
 
Don't sit and brute-force them all day.
 
Find nice functions and list them -
 
Integrable system!
 
Let symmetries show you the way."
 
~Ed~


|}                                                                         
|}                                                                         
Line 262: Line 236:
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
|-
|-
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Moisies Heradon'''
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''TBD'''
|-
|-
| bgcolor="#BCD2EE"  align="center" | Title: Symplectic Geometry III
| bgcolor="#BCD2EE"  align="center" | Title: TBD
|-
|-
| bgcolor="#BCD2EE"  |   
| bgcolor="#BCD2EE"  |   
Line 275: Line 249:
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
|-
|-
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Nathan  Clements'''
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''TBD'''
|-
|-
| bgcolor="#BCD2EE"  align="center" | Title: Moduli Spaces of Sheaves on Singular Curves
| bgcolor="#BCD2EE"  align="center" | Title: TBD
|-
|-
| bgcolor="#BCD2EE"  |   
| bgcolor="#BCD2EE"  |   
Abstract: I will explain some useful techniques for the study of sheaves on singular curves of arithmetic genus one.  In particular, there are many isomorphisms between moduli spaces of different sorts of sheaves on a given curve coming from natural operations on sheaves.
Abstract: TBD
|}                                                                         
|}                                                                         
</center>
</center>
Line 287: Line 261:
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
|-
|-
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Nathan Clements'''
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''TBD'''
|-
|-
| bgcolor="#BCD2EE"  align="center" | Title: Moduli Spaces of Sheaves on Singular Curves
| bgcolor="#BCD2EE"  align="center" | Title: TBD
|-
|-
| bgcolor="#BCD2EE"  |   
| bgcolor="#BCD2EE"  |   
Abstract: I will explain some useful techniques for the study of sheaves on singular curves of arithmetic genus one.  In particular, there are many isomorphisms between moduli spaces of different sorts of sheaves on a given curve coming from natural operations on sheaves.
Abstract: TBD
|}                                                                         
|}                                                                         
</center>
</center>
Line 299: Line 273:
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
|-
|-
| bgcolor="#A6B658" align="center" style="font-size:125%" | ''' NO GAGS THIS WEEK '''
| bgcolor="#A6B658" align="center" style="font-size:125%" | ''' TBD '''
|-
|-
| bgcolor="#BCD2EE"  align="center" | Title: No Talk Due to Thanksgiving
| bgcolor="#BCD2EE"  align="center" | Title: TBD
|-
|-
| bgcolor="#BCD2EE"  |   
| bgcolor="#BCD2EE"  |   
Abstract: Enjoy the break!
Abstract: TBD
|}                                                                         
|}                                                                         
</center>
</center>
Line 311: Line 285:
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
|-
|-
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Jay Yang'''
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''TBD'''
|-
|-
| bgcolor="#BCD2EE"  align="center" | Title: TBD, about tropical geometry
| bgcolor="#BCD2EE"  align="center" | Title: TBD
|-
|-
| bgcolor="#BCD2EE"  |   
| bgcolor="#BCD2EE"  |   
Line 324: Line 298:
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
|-
|-
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Dima Arinkin'''
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''TBD'''
|-
|-
| bgcolor="#BCD2EE"  align="center" | Title: Birational classification of surfaces
| bgcolor="#BCD2EE"  align="center" | Title: TBD
|-
|-
| bgcolor="#BCD2EE"  |   
| bgcolor="#BCD2EE"  |   

Revision as of 23:03, 7 January 2016

When: Wednesdays 4:00pm

Where:Van Vleck B325

Lizzie the OFFICIAL mascot of GAGS!!

Who: YOU!!

Why: The purpose of this seminar is to learn algebraic geometry by giving and listening to talks in a informal setting. Talks are typically accessible to beginning graduate students and take many different forms. Sometimes people present an interesting paper they find. Other times people give a prep talk for the Friday Algebraic Geometry Seminar. Other times people give a series of talks on a topic they have been studying in-depth.

How:If you want to get emails regarding time, place, and talk topics (which are often assigned quite last minute) add yourself to the gags mailing list: gags@lists.wisc.edu. The list registration page is here.



Give a talk!

We need volunteers to give talks this semester. If you're interested contact DJ, or just add yourself to the list (though in that case we might move your talk later without your permission). Beginning graduate students are particularly encouraged to give a talk, since it's a great way to get your feet wet with the material.


Wish List

If there is a subject or a paper which you'd like to see someone give a talk on, add it to this list. If you want to give a talk and can't find a topic, try one from this list.

  • Bondal and Orlov: semiorthogonal decompositions for algebraic varieties (Note: this is about cool stuff like Fourier-Mukai transforms)
  • Braverman and Bezrukavnikov: geometric Langlands correspondence for D-modules in prime characteristic: the GL(n) case (Note: this title sounds tough but prime characteristic makes things easier)
  • homological projective duality
  • moment map and symplectic reduction
  • the orbit method (for classifying representations of a Lie group)
  • Kaledin: geometry and topology of symplectic resolutions
  • Kashiwara: D-modules and representation theory of Lie groups (Note: Check out that diagram on page 2!)
  • geometric complexity theory, maybe something like arXiv:1508.05788.


Fall 2015

Date Speaker Title (click to see abstract)
September 2 TBD TBD
September 9 TBD TBD
September 16 TBD TBD
September 23 TBD TBD
September 30 TBD TBD
October 7 TBD TBD
October 14 TBD TBD
October 21 TBD TBD
October 28 TBD TBD
November 4 TBD TBD
November 11 TBD TBD
November 18 TBD TBD
November 25 TBD TBD
December 2 TBD TBD
December 9 TBD TBD
December 16 TBD TBD

September 2

TBD
Title: TBD

Abstract: TBD

September 9

TBD
Title: TBD

Abstract: TBD

September 16

TBD
Title: TBD

Abstract: TBD

September 23

TBD
Title: TBD

Abstract: TBD

September 30

TBD
Title: TBD

Abstract: TBD

October 7

Zachary Charles
Title: TBD

Abstract: TBD

October 14

TBD
Title: TBD

Abstract: TBD

October 21

TBD
Title: TBD

Abstract: TBD

October 28

TBD
Title: TBD

Abstract: TBD

November 4

TBD
Title: TBD

Abstract: TBD

November 11

TBD
Title: TBD

Abstract: TBD

November 18

TBD
Title: TBD

Abstract: TBD

November 25

TBD
Title: TBD

Abstract: TBD

December 2

TBD
Title: TBD

Abstract: TBD

December 9

TBD
Title: TBD

Abstract: TBD

December 16

TBD
Title: TBD

Abstract: TBD

Organizers' Contact Info

DJ Bruce

Nathan Clement

Ed Dewey

Past Semesters

Fall 2015