Graduate Algebraic Geometry Seminar Fall 2017: Difference between revisions

From DEV UW-Math Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 56: Line 56:
| bgcolor="#E0E0E0"| September 9
| bgcolor="#E0E0E0"| September 9
| bgcolor="#C6D46E"| No one
| bgcolor="#C6D46E"| No one
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#September 9| Nothing ]]
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#September 9| No Talk ]]
|-
|-
| bgcolor="#E0E0E0"| September 16
| bgcolor="#E0E0E0"| September 16
Line 64: Line 64:
| bgcolor="#E0E0E0"| September 23   
| bgcolor="#E0E0E0"| September 23   
| bgcolor="#C6D46E"| DJ Bruce
| bgcolor="#C6D46E"| DJ Bruce
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#September 16| TBD ]]  
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#September 16| The Ring ]]  
|-
|-
| bgcolor="#E0E0E0"| September 30
| bgcolor="#E0E0E0"| September 30
| bgcolor="#C6D46E"| DJ Bruce
| bgcolor="#C6D46E"| DJ Bruce
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#September 23| TBD ]]  
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#September 23| The Ring (cont). ]]  
|-
|-
| bgcolor="#E0E0E0"| October 7
| bgcolor="#E0E0E0"| October 7
Line 120: Line 120:
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
|-
|-
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''TBD'''
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Ed Dewey'''
|-
|-
| bgcolor="#BCD2EE"  align="center" | Title: A^1 homotopy theory and rank-2 vector bundles on smooth affine surfaces
| bgcolor="#BCD2EE"  align="center" | Title: A^1 homotopy theory and rank-2 vector bundles on smooth affine surfaces
Line 133: Line 133:
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
|-
|-
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''TBD'''
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''No Talk'''
|-
|-
| bgcolor="#BCD2EE"  align="center" | Title: No Talk
| bgcolor="#BCD2EE"  align="center" | Title: N/A
|-
|-
| bgcolor="#BCD2EE"  |   
| bgcolor="#BCD2EE"  |   
Line 145: Line 145:
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
|-
|-
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''TBD'''
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Ed Dewey'''
|-
|-
| bgcolor="#BCD2EE"  align="center" | Title: A^1 homotopy theory and rank-2 vector bundles on smooth affine surfaces
| bgcolor="#BCD2EE"  align="center" | Title: A^1 homotopy theory and rank-2 vector bundles on smooth affine surfaces (cont).
|-
|-
| bgcolor="#BCD2EE"  |   
| bgcolor="#BCD2EE"  |   
Line 158: Line 158:
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
|-
|-
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''TBD'''
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''DJ Bruce'''
|-
|-
| bgcolor="#BCD2EE"  align="center" | Title: The Ring
| bgcolor="#BCD2EE"  align="center" | Title: The Ring
Line 170: Line 170:
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
|-
|-
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''TBD'''
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''DJ Bruce'''
|-
|-
| bgcolor="#BCD2EE"  align="center" | Title: The Ring
| bgcolor="#BCD2EE"  align="center" | Title: The Ring (cont.)
|-
|-
| bgcolor="#BCD2EE"  |   
| bgcolor="#BCD2EE"  |   
Line 182: Line 182:
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
|-
|-
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''TBD'''
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Zachary Charles'''
|-
|-
| bgcolor="#BCD2EE"  align="center" | Title: An Introduction to Real Algebraic Geometry and the Real Spectrum
| bgcolor="#BCD2EE"  align="center" | Title: An Introduction to Real Algebraic Geometry and the Real Spectrum
Line 194: Line 194:
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
|-
|-
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''TBD'''
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Zachary Charles'''
|-
|-
| bgcolor="#BCD2EE"  align="center" | Title: An Introduction to Real Algebraic Geometry and the Real Spectrum
| bgcolor="#BCD2EE"  align="center" | Title: An Introduction to Real Algebraic Geometry and the Real Spectrum
Line 220: Line 220:
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
|-
|-
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''TBD'''
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Eva Elduque'''
|-
|-
| bgcolor="#BCD2EE"  align="center" | Title: TBD
| bgcolor="#BCD2EE"  align="center" | Title: TBD
Line 232: Line 232:
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
|-
|-
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''TBD'''
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Moisies Heradon'''
|-
|-
| bgcolor="#BCD2EE"  align="center" | Title: TBD
| bgcolor="#BCD2EE"  align="center" | Title: TBD
Line 244: Line 244:
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
|-
|-
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''TBD'''
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Eva Elduque'''
|-
|-
| bgcolor="#BCD2EE"  align="center" | Title: TBD"
| bgcolor="#BCD2EE"  align="center" | Title: TBD"
Line 256: Line 256:
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
|-
|-
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''TBD'''
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Jay Yang'''
|-
|-
| bgcolor="#BCD2EE"  align="center" | Title: TBD
| bgcolor="#BCD2EE"  align="center" | Title: TBD

Revision as of 16:15, 6 October 2015

When: Wednesdays 4:00pm

Where:Van Vleck B325

Lizzie the OFFICIAL mascot of GAGS!!

Who: YOU!!

Why: The purpose of this seminar is to learn algebraic geometry by giving and listening to talks in a informal setting. Talks are typically accessible to beginning graduate students and take many different forms. Sometimes people present an interesting paper they find. Other times people give a prep talk for the Friday Algebraic Geometry Seminar. Other times people give a series of talks on a topic they have been studying in-depth.

How:If you want to get emails regarding time, place, and talk topics (which are often assigned quite last minute) add yourself to the gags mailing list: gags@lists.wisc.edu. The list registration page is here.



Give a talk!

We need volunteers to give talks this semester. If you're interested contact DJ, or just add yourself to the list (though in that case we might move your talk later without your permission). Beginning graduate students are particularly encouraged to give a talk, since it's a great way to get your feet wet with the material.


Wish List

If there is a subject or a paper which you'd like to see someone give a talk on, add it to this list. If you want to give a talk and can't find a topic, try one from this list.

  • Bondal and Orlov: semiorthogonal decompositions for algebraic varieties (Note: this is about cool stuff like Fourier-Mukai transforms)
  • Braverman and Bezrukavnikov: geometric Langlands correspondence for D-modules in prime characteristic: the GL(n) case (Note: this title sounds tough but prime characteristic makes things easier)
  • homological projective duality
  • moment map and symplectic reduction
  • the orbit method (for classifying representations of a Lie group)
  • Kaledin: geometry and topology of symplectic resolutions
  • Kashiwara: D-modules and representation theory of Lie groups (Note: Check out that diagram on page 2!)
  • geometric complexity theory, maybe something like arXiv:1508.05788.


Fall 2015

Date Speaker Title (click to see abstract)
September 2 Ed Dewey A^1 homotopy theory and rank-2 vector Bundles on smooth affine surfaces
September 9 No one No Talk
September 16 Ed Dewey A^1 homotopy theory and rank-2 vector Bundles on smooth affine surfaces (cont.)
September 23 DJ Bruce The Ring
September 30 DJ Bruce The Ring (cont).
October 7 Zachary Charles An Introduction to Real Algebraic Geometry and the Real Spectrum
October 14 Zachary Charles An Introduction to Real Algebraic Geometry and the Real Spectrum
October 21 Nathan Clement Moduli Spaces of Sheaves on Singular Curves
October 28 Eva Elduque TBD
November 4 Moisies Heradon TBD
November 11 Eva Elduque TBD
November 18 Jay Yang TBD
November 25 No Seminar Thanksgiving TBD
December 2 TBD TBD
December 9 TBD TBD
December 16 TBD TBD

September 2

Ed Dewey
Title: A^1 homotopy theory and rank-2 vector bundles on smooth affine surfaces

Abstract: I will introduce the techniques used by Asok and Fasel to classify rank-2 vector bundles on a smooth affine 3-fold (arXiv:1204.0770). The problem itself is interesting, and the solution uses the A^1 homotopy category. My main goal is to make this category seem less bonkers.

September 9

No Talk
Title: N/A

Abstract: There will be no GAG's talk this week as it conflicts with the computing workshop.

September 16

Ed Dewey
Title: A^1 homotopy theory and rank-2 vector bundles on smooth affine surfaces (cont).

Abstract: I will introduce the techniques used by Asok and Fasel to classify rank-2 vector bundles on a smooth affine 3-fold (arXiv:1204.0770). The problem itself is interesting, and the solution uses the A^1 homotopy category. My main goal is to make this category seem less bonkers.

September 23

DJ Bruce
Title: The Ring

Abstract: The Grothendieck ring of varieties is an incredibly mysterious object that seems to capture a bunch of arithmetic, geometric, and topological data regarding algebraic varieties. We will explore some of these connections. For example, we will see how the Weil Conjectures are related to stable birational geometry. No background will be assumed and the speaker will try to keep things accessible to all.

September 30

DJ Bruce
Title: The Ring (cont.)

Abstract: The Grothendieck ring of varieties is an incredibly mysterious object that seems to capture a bunch of arithmetic, geometric, and topological data regarding algebraic varieties. We will explore some of these connections. For example, we will see how the Weil Conjectures are related to stable birational geometry. No background will be assumed and the speaker will try to keep things accessible to all.

October 7

Zachary Charles
Title: An Introduction to Real Algebraic Geometry and the Real Spectrum

Abstract: TBD

October 14

Zachary Charles
Title: An Introduction to Real Algebraic Geometry and the Real Spectrum

Abstract: TBD

October 21

Nathan Clement
Title: Moduli Spaces of Sheaves on Singular Curves

Abstract: I will explain some useful techniques for the study of sheaves on singular curves of arithmetic genus one. In particular, there are many isomorphisms between moduli spaces of different sorts of sheaves on a given curve coming from natural operations on sheaves.

October 28

Eva Elduque
Title: TBD

Abstract: TBD

November 4

Moisies Heradon
Title: TBD

Abstract: TBD

November 11

Eva Elduque
Title: TBD"

Abstract: TBD

November 18

Jay Yang
Title: TBD

Abstract: TBD

November 25

NO GAGS THIS WEEK
Title: No Talk Due to Thanksgiving

Abstract: Enjoy the break!

December 2

TBD
Title: TBD

Abstract: TBD

December 9

TBD
Title: TBD

Abstract: TBD

December 16

TBD
Title: TBD

Abstract: TBD

Organizers' Contact Info

DJ Bruce

Nathan Clement

Ed Dewey