NTSGrad Spring 2024/Abstracts: Difference between revisions

From DEV UW-Math Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
 
(8 intermediate revisions by 3 users not shown)
Line 7: Line 7:
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
|-
|-
| bgcolor="#F0A0A0" align="center" style="font-size:125%" |Tejasi Bhatnagar
| bgcolor="#F0A0A0" align="center" style="font-size:125%" |[https://sites.google.com/view/tbhatnagar/home?authuser=0 Tejasi Bhatnagar]
|-
|-
| bgcolor="#BCD2EE"  align="center" |[[NTSGrad Spring 2024/Abstracts#1/23|Stratification in the moduli space of abelian varieties in char p.]]
| bgcolor="#BCD2EE"  align="center" |[[NTSGrad Spring 2024/Abstracts#1/23|Stratification in the moduli space of abelian varieties in char p.]]
Line 22: Line 22:
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
|-
|-
| bgcolor="#F0A0A0" align="center" style="font-size:125%" |  
| bgcolor="#F0A0A0" align="center" style="font-size:125%" |Joey Yu Luo
|-
|-
| bgcolor="#BCD2EE"  align="center" |
| bgcolor="#BCD2EE"  align="center" |Gross-Zagier formula: motivation
|-
|-
| bgcolor="#BCD2EE"  |
| bgcolor="#BCD2EE"  |In this talk, I will sketch how to use the modularity theorem to construct lots of rational points in the elliptic curves, based on the idea of Heegner. Among the constructions, we will see how L-functions come into the story, and how the story end up with the Gross-Zagier formula.
|}                                                                         
|}                                                                         
</center>
</center>
Line 37: Line 37:
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
|-
|-
| bgcolor="#F0A0A0" align="center" style="font-size:125%" |
| bgcolor="#F0A0A0" align="center" style="font-size:125%" |'''Hyun Jong Kim'''
|-
|-
| bgcolor="#BCD2EE"  align="center" |
| bgcolor="#BCD2EE"  align="center" |A Zoo of L-functions
|-
|-
| bgcolor="#BCD2EE"  |
| bgcolor="#BCD2EE"  |I will talk about some different kinds of L-functions (and zeta functions) and maybe some problems surrounding them.
Here are notes: https://github.com/hyunjongkimmath/GNTS_spring_2024_presentation_notes
|}                                                                         
|}                                                                         
</center>
</center>
Line 52: Line 53:
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
|-
|-
| bgcolor="#F0A0A0" align="center" style="font-size:125%" |
| bgcolor="#F0A0A0" align="center" style="font-size:125%" |Sun Woo Park
|-
|-
| bgcolor="#BCD2EE"  align="center" |
| bgcolor="#BCD2EE"  align="center" |Counting integer solutions of $x^2+y^2=r$ satisfying prime divisibility conditions
|-
|-
| bgcolor="#BCD2EE"  |
| bgcolor="#BCD2EE"  |As a slight relation to Hyun Jong's talk on zoos of L-functions last week, we'll explore how one can use Dedekind zeta functions over number fields to count integer points lying on a circle of integral radius r centered at the origin and satisfying some prime divisibility conditions. If time allows, we'll see how this counting problem is related to counting isomorphism classes of elliptic curves over Q of bounded naive heights that admit Q-rational 5-isogenies, an application of which is based on joint work with Santiago Arango-Pineros, Changho Han, and Oana Padurariu.
|}                                                                         
|}                                                                         
</center>
</center>
Line 65: Line 66:


<center>
<center>
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
{| style="color:black; font-size:100%" border="2" cellpadding="10" width="700" cellspacing="20" table
|-
|-
| bgcolor="#F0A0A0" align="center" style="font-size:125%" |
| bgcolor="#F0A0A0" align="center" style="font-size:125%" |Eiki Norizuki
|-
|-
| bgcolor="#BCD2EE" align="center" |
| bgcolor="#BCD2EE" align="center" |Abelian Varieties over C
|-
|-
| bgcolor="#BCD2EE" |
| bgcolor="#BCD2EE" | I will talk about the basics of abelian varieties over the complex numbers, in particular their line bundles, polarization and related topics. Time permitting, I may talk about A_g and the Schottky problem.
|}                                                                         
|}                                                                         
</center>
</center>
Line 77: Line 78:
<br>
<br>


== 2/27 ==
<center>
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
|-
| bgcolor="#F0A0A0" align="center" style="font-size:125%" |
|-
| bgcolor="#BCD2EE"  align="center" |
|-
| bgcolor="#BCD2EE"  |
|}                                                                       
</center>
<br>


== 3/5 ==
==2/27==


<center>
<center>
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
{| style="color:black; font-size:100%" border="2" cellpadding="10" width="700" cellspacing="20" table
|-
|-
| bgcolor="#F0A0A0" align="center" style="font-size:125%" |
| bgcolor="#F0A0A0" align="center" style="font-size:125%" |
|-
|-
| bgcolor="#BCD2EE" align="center" |
| bgcolor="#BCD2EE" align="center" |
|-
|-
| bgcolor="#BCD2EE" |
| bgcolor="#BCD2EE" |
|}                                                                         
|}                                                                         
</center>
</center>
Line 107: Line 94:
<br>
<br>


== 3/12 ==
==3/5==


<center>
<center>
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
{| style="color:black; font-size:100%" border="2" cellpadding="10" width="700" cellspacing="20" table
|-
|-
| bgcolor="#F0A0A0" align="center" style="font-size:125%" |
| bgcolor="#F0A0A0" align="center" style="font-size:125%" |
|-
|-
| bgcolor="#BCD2EE" align="center" |
| bgcolor="#BCD2EE" align="center" |
|-
|-
| bgcolor="#BCD2EE" |
| bgcolor="#BCD2EE" |
|}                                                                         
|}                                                                         
</center>
</center>
Line 122: Line 109:
<br>
<br>


== 3/19 ==
==3/12==


<center>
<center>
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
{| style="color:black; font-size:100%" border="2" cellpadding="10" width="700" cellspacing="20" table
|-
|-
| bgcolor="#F0A0A0" align="center" style="font-size:125%" |
| bgcolor="#F0A0A0" align="center" style="font-size:125%" |
|-
|-
| bgcolor="#BCD2EE" align="center" |
| bgcolor="#BCD2EE" align="center" |
|-
|-
| bgcolor="#BCD2EE" |
| bgcolor="#BCD2EE" |
|}                                                                         
|}                                                                         
</center>
</center>
Line 137: Line 124:
<br>
<br>


== 3/26 ==
==3/19==


<center>
<center>
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
{| style="color:black; font-size:100%" border="2" cellpadding="10" width="700" cellspacing="20" table
|-
|-
| bgcolor="#F0A0A0" align="center" style="font-size:125%" |
| bgcolor="#F0A0A0" align="center" style="font-size:125%" |Yifan Wei
|-
|-
| bgcolor="#BCD2EE" align="center" |
| bgcolor="#BCD2EE" align="center" |Periods and Class Field Theory
|-
|-
| bgcolor="#BCD2EE" |
| bgcolor="#BCD2EE" |We are going to calculate some algebraic integrals on algebraic curves (in particular a twice punctured elliptic curve/Q), figure out their transcendence over Q (to the best of our abilities...). Then we are going to remember class field theory and calculate these integrals cleverly on "the space" (to be revealed in the talk). I'll explain why "the space" is a sane object, and discuss the relation between these integrals and (oh my) Galois representations.
|}                                                                         
|}                                                                         
</center>
</center>
Line 152: Line 139:
<br>
<br>


== 4/2 ==
==3/26==


<center>
<center>
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
{| style="color:black; font-size:100%" border="2" cellpadding="10" width="700" cellspacing="20" table
|-
|-
| bgcolor="#F0A0A0" align="center" style="font-size:125%" |
| bgcolor="#F0A0A0" align="center" style="font-size:125%" |
|-
|-
| bgcolor="#BCD2EE" align="center" |
| bgcolor="#BCD2EE" align="center" |
|-
|-
| bgcolor="#BCD2EE" |
| bgcolor="#BCD2EE" |
|}                                                                         
|}                                                                         
</center>
</center>
Line 167: Line 154:
<br>
<br>


== 4/9 ==
==4/2==


<center>
<center>
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
{| style="color:black; font-size:100%" border="2" cellpadding="10" width="700" cellspacing="20" table
|-
|-
| bgcolor="#F0A0A0" align="center" style="font-size:125%" |
| bgcolor="#F0A0A0" align="center" style="font-size:125%" |
|-
|-
| bgcolor="#BCD2EE" align="center" |
| bgcolor="#BCD2EE" align="center" |
|-
|-
| bgcolor="#BCD2EE" |
| bgcolor="#BCD2EE" |
|}                                                                         
|}                                                                         
</center>
</center>
Line 182: Line 169:
<br>
<br>


== 4/16 ==
==4/9==


<center>
<center>
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
{| style="color:black; font-size:100%" border="2" cellpadding="10" width="700" cellspacing="20" table
|-
|-
| bgcolor="#F0A0A0" align="center" style="font-size:125%" |
| bgcolor="#F0A0A0" align="center" style="font-size:125%" |
|-
|-
| bgcolor="#BCD2EE" align="center" |
| bgcolor="#BCD2EE" align="center" |
|-
|-
| bgcolor="#BCD2EE" |
| bgcolor="#BCD2EE" |
|}                                                                         
|}                                                                         
</center>
</center>
Line 197: Line 184:
<br>
<br>


== 4/23 ==
==4/16==


<center>
<center>
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
{| style="color:black; font-size:100%" border="2" cellpadding="10" width="700" cellspacing="20" table
|-
|-
| bgcolor="#F0A0A0" align="center" style="font-size:125%" |
| bgcolor="#F0A0A0" align="center" style="font-size:125%" |'''Hyun Jong Kim'''
|-
|-
| bgcolor="#BCD2EE" align="center" |
| bgcolor="#BCD2EE" align="center" |Thesis Defense: Cohen-Lenstra heuristics and vanishing of zeta functions for superelliptic curves over finite fields
|-
|-
| bgcolor="#BCD2EE" |
| bgcolor="#BCD2EE" |Ellenberg-Venkatesh-Westerland proved a Cohen-Lenstra result for imaginary quadratic function fields over finite fields by asymptotically counting points on Hurwitz schemes, which parameterize tamely ramified G-covers of the projective line. Moreover, Ellenberg-Li-Shusterman used the methods of Ellenberg-Venkatesh-Westerland to prove that a fixed complex number vanishes on almost no Zeta functions of hyperelliptic curves over finite fields, with respect to a limit taking the genera of the curves to infinity and then the sizes of the base fields to infinity. I will talk about my thesis work on extending their results to higher degree function fields and curves, including a big monodromy result for the moduli space of superelliptic curves.
|}                                                                         
|}                                                                         
</center>
</center>
Line 212: Line 199:
<br>
<br>


== 4/30 ==
==4/23==


<center>
<center>
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
{| style="color:black; font-size:100%" border="2" cellpadding="10" width="700" cellspacing="20" table
|-
|-
| bgcolor="#F0A0A0" align="center" style="font-size:125%" |
| bgcolor="#F0A0A0" align="center" style="font-size:125%" |
|-
|-
| bgcolor="#BCD2EE" align="center" |
| bgcolor="#BCD2EE" align="center" |
|-
|-
| bgcolor="#BCD2EE" |
| bgcolor="#BCD2EE" |
|}                                                                         
|}                                                                         
</center>
</center>
Line 227: Line 214:
<br>
<br>


== 5/7 ==
==4/30==


<center>
<center>
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
{| style="color:black; font-size:100%" border="2" cellpadding="10" width="700" cellspacing="20" table
|-
|-
| bgcolor="#F0A0A0" align="center" style="font-size:125%" |
| bgcolor="#F0A0A0" align="center" style="font-size:125%" |Chenghuang Chen
|-
|-
| bgcolor="#BCD2EE" align="center" |
| bgcolor="#BCD2EE" align="center" |Bounds for the subsets lacking progressions in {1,2,…,N}
|-
|-
| bgcolor="#BCD2EE" |
| bgcolor="#BCD2EE" |I will talk about progressions in {1,2,…,N}. I will start with bounds for the subsets lacking arithmetic progressions, talk about some history and results in this area. After that, I will focus on bounds for the subsets lacking other progressions like polynomials. If I have more time, I will talk about some details of lacking general polynomials in S. Slijepčević's paper in 2003.
|}                                                                         
|}                                                                         
</center>
</center>


<br>
<br>

Latest revision as of 00:27, 27 April 2024

This page contains the titles and abstracts for talks scheduled in the Spring 2024 semester. To go back to the main GNTS page for the semester, click here.


1/23

Tejasi Bhatnagar
Stratification in the moduli space of abelian varieties in char p.
This talk will be an introduction to studying moduli space of abelian varieties in characteristic p via different stratifications. This will be a pre-talk for the upcoming Arizona Winter school in March! I'll try and introduce the theory and give an overview of the kinds of questions and objects we'll come across in the winter school.


1/30

Joey Yu Luo
Gross-Zagier formula: motivation
In this talk, I will sketch how to use the modularity theorem to construct lots of rational points in the elliptic curves, based on the idea of Heegner. Among the constructions, we will see how L-functions come into the story, and how the story end up with the Gross-Zagier formula.


2/6

Hyun Jong Kim
A Zoo of L-functions
I will talk about some different kinds of L-functions (and zeta functions) and maybe some problems surrounding them.

Here are notes: https://github.com/hyunjongkimmath/GNTS_spring_2024_presentation_notes


2/13

Sun Woo Park
Counting integer solutions of $x^2+y^2=r$ satisfying prime divisibility conditions
As a slight relation to Hyun Jong's talk on zoos of L-functions last week, we'll explore how one can use Dedekind zeta functions over number fields to count integer points lying on a circle of integral radius r centered at the origin and satisfying some prime divisibility conditions. If time allows, we'll see how this counting problem is related to counting isomorphism classes of elliptic curves over Q of bounded naive heights that admit Q-rational 5-isogenies, an application of which is based on joint work with Santiago Arango-Pineros, Changho Han, and Oana Padurariu.


2/20

Eiki Norizuki
Abelian Varieties over C
I will talk about the basics of abelian varieties over the complex numbers, in particular their line bundles, polarization and related topics. Time permitting, I may talk about A_g and the Schottky problem.



2/27


3/5


3/12


3/19

Yifan Wei
Periods and Class Field Theory
We are going to calculate some algebraic integrals on algebraic curves (in particular a twice punctured elliptic curve/Q), figure out their transcendence over Q (to the best of our abilities...). Then we are going to remember class field theory and calculate these integrals cleverly on "the space" (to be revealed in the talk). I'll explain why "the space" is a sane object, and discuss the relation between these integrals and (oh my) Galois representations.


3/26


4/2


4/9


4/16

Hyun Jong Kim
Thesis Defense: Cohen-Lenstra heuristics and vanishing of zeta functions for superelliptic curves over finite fields
Ellenberg-Venkatesh-Westerland proved a Cohen-Lenstra result for imaginary quadratic function fields over finite fields by asymptotically counting points on Hurwitz schemes, which parameterize tamely ramified G-covers of the projective line. Moreover, Ellenberg-Li-Shusterman used the methods of Ellenberg-Venkatesh-Westerland to prove that a fixed complex number vanishes on almost no Zeta functions of hyperelliptic curves over finite fields, with respect to a limit taking the genera of the curves to infinity and then the sizes of the base fields to infinity. I will talk about my thesis work on extending their results to higher degree function fields and curves, including a big monodromy result for the moduli space of superelliptic curves.


4/23


4/30

Chenghuang Chen
Bounds for the subsets lacking progressions in {1,2,…,N}
I will talk about progressions in {1,2,…,N}. I will start with bounds for the subsets lacking arithmetic progressions, talk about some history and results in this area. After that, I will focus on bounds for the subsets lacking other progressions like polynomials. If I have more time, I will talk about some details of lacking general polynomials in S. Slijepčević's paper in 2003.