Probability Seminar: Difference between revisions

From DEV UW-Math Wiki
Jump to navigation Jump to search
No edit summary
 
(51 intermediate revisions by 7 users not shown)
Line 1: Line 1:
__NOTOC__
__NOTOC__
[[Probability | Back to Probability Group]]
[[Probability | Back to Probability Group]]
* '''When''': Thursdays at 2:30 pm
* '''Where''': 901 Van Vleck Hall
* '''Organizers''': Hanbaek Lyu, Tatyana Shcherbyna, David Clancy
* '''To join the probability seminar mailing list:''' email probsem+subscribe@g-groups.wisc.edu.
* '''To subscribe seminar lunch announcements:''' email lunchwithprobsemspeaker+subscribe@g-groups.wisc.edu


[[Past Seminars]]
[[Past Seminars]]


= Fall 2023 =
 
= Fall 2024 =
<b>Thursdays at 2:30 PM either in 901 Van Vleck Hall or on Zoom</b>
<b>Thursdays at 2:30 PM either in 901 Van Vleck Hall or on Zoom</b>


We usually end for questions at 3:20 PM.
We usually end for questions at 3:20 PM.


== September 14, 2023: [https://www.mathjunge.com/ Matthew Junge] (CUNY) ==
== September 5, 2024: ==
'''The frog model on trees'''
No seminar
 
== September 12, 2024: Hongchang Ji (UW-Madison) ==
'''Spectral edge of non-Hermitian random matrices'''
 
We report recent progress on spectra of so-called deformed i.i.d. matrices. They are square non-Hermitian random matrices of the form $A+X$ where $X$ has centered i.i.d. entries and $A$ is a deterministic bias, and $A$ and $X$ are on the same scale so that their contributions to the spectrum of $A+X$ are comparable. Under this setting, we present two recent results concerning universal patterns arising in eigenvalue statistics of $A+X$ around its boundary, on macroscopic and microscopic scales. The first result shows that the macroscopic eigenvalue density of $A+X$ typically has a jump discontinuity around the boundary of its support, which is a distinctive feature of $X$ by the \emph{circular law}. The second result is edge universality for deformed non-Hermitian matrices; it shows that the local eigenvalue statistics of $A+X$ around a typical (jump) boundary point is universal, i.e., matches with those of a Ginibre matrix $X$ with i.i.d. standard Gaussian entries.
 
Based on joint works with A. Campbell, G. Cipolloni, and L. Erd\H{o}s.
 
 
== September 19, 2024: Miklos Racz (Northwestern) ==
'''The largest common subtree of uniform attachment trees'''
 
Consider two independent uniform attachment trees with n nodes each -- how large is their largest common subtree? Our main result gives a lower bound of n^{0.83}. We also give some upper bounds and bounds for general random tree growth models. This is based on joint work with Johannes Bäumler, Bas Lodewijks, James Martin, Emil Powierski, and Anirudh Sridhar.
 
== September 26, 2024: Dmitry Krachun (Princeton) ==
'''A glimpse of universality in critical planar lattice models'''  
 
Abstract: Many models of statistical mechanics are defined on a lattice, yet they describe behaviour of objects in our seemingly isotropic world. It is then natural to ask why, in the small mesh size limit, the directions of the lattice disappear. Physicists' answer to this question is partially given by the Universality hypothesis, which roughly speaking states that critical properties of a physical system do not depend on the lattice or fine properties of short-range interactions but only depend on the spatial dimension and the symmetry of the possible spins. Justifying the reasoning behind the universality hypothesis mathematically seems virtually impossible and so other ideas are needed for a rigorous derivation of universality even in the simplest of setups.
 
In this talk I will explain some ideas behind the recent result which proves rotational invariance of the FK-percolation model. In doing so, we will see how rotational invariance is related to universality among a certain one-dimensional family of planar lattices and how the latter can be proved using exact integrability of the six-vertex model using Bethe ansatz.


The frog model describes random activation and spread. Think combustion or an epidemic. I have studied these dynamics on ''d''-ary trees for ten years. I will discuss our progress and what remains to be done.
Based on joint works with Hugo Duminil-Copin, Karol Kozlowski, Ioan Manolescu, Mendes Oulamara, and Tatiana Tikhonovskaia.


== September 21, 2023: [https://yierlin.me/ Yier Lin] (U. Chicago) ==
== October 3, 2024: Joshua Cape (UW-Madison) ==
'''Large Deviations of the KPZ Equation and Most Probable Shapes'''
'''A new random matrix: motivation, properties, and applications'''


In this talk, we introduce and study a new random matrix whose entries are dependent and discrete valued. This random matrix is motivated by problems in multivariate analysis and nonparametric statistics. We establish its asymptotic properties and provide comparisons to existing results for independent entry random matrix models. We then apply our results to two problems: (i) community detection, and (ii) principal submatrix localization. Based on joint work with Jonquil Z. Liao.


The KPZ equation is a stochastic PDE that plays a central role in a class of random growth phenomena. In this talk, we will explore the Freidlin-Wentzell LDP for the KPZ equation through the lens of the variational principle. Additionally, we will explain how to extract various limits of the most probable shape of the KPZ equation using the variational formula. We will also discuss an alternative approach for studying these quantities using the method of moments. This talk is based in part on joint works with Pierre Yves Gaudreau Lamarre and Li-Cheng Tsai.
== October 10, 2024: Midwest Probability Colloquium ==
N/A


== September 28, 2023: [https://warwick.ac.uk/fac/sci/statistics/staff/academic-research/rosati/ Tommaso Rosati] (U. Warwick) ==
== October 17, 2024: Kihoon Seong (Cornell) ==
'''The Allen-Cahn equation with weakly critical initial datum'''
'''Gaussian fluctuations of focusing Φ^4 measure around the soliton manifold'''


We study the 2D Allen-Cahn with white noise initial datum. In a weak coupling regime, where the nonlinearity is damped in relation to the smoothing of the initial condition, we prove Gaussian fluctuations. The effective variance that appears can be described as the solution to an ODE. Our proof builds on a Wild expansion of the solution, which is controlled through precise combinatorial estimates. Joint work with Simon Gabriel and Nikolaos Zygouras.
I will explain the central limit theorem for the focusing Φ^4 measure in the infinite volume limit. The focusing Φ^4 measure, an invariant Gibbs measure for the nonlinear Schrödinger equation, was first studied by Lebowitz, Rose, and Speer (1988), and later extended by Bourgain (1994), Brydges and Slade (1996), and Carlen, Fröhlich, and Lebowitz (2016).  


== October 5, 2023:  ==
Rider previously showed that this measure is strongly concentrated around a family of minimizers of the associated Hamiltonian, known as the soliton manifold. In this talk, I will discuss the fluctuations around this soliton manifold. Specifically, we show that the scaled field under the focusing Φ^4 measure converges to white noise in the infinite volume limit, thus identifying the next-order fluctuations, as predicted by Rider.
'''Abstract, title: TBA'''


== October 12, 2023: No Seminar ([https://sites.math.northwestern.edu/mwp/ Midwest Probability Colloquium]) ==
This talk is based on joint work with Philippe Sosoe (Cornell).


== October 19, 2023: [https://www.paulduncan.net/ Paul Duncan] (Hebrew University of Jerusalem) ==
== October 24, 2024: Jacob Richey (Alfred Renyi Institute) ==
'''Deconfinement in Ising Lattice Gauge Theory'''
'''Stochastic abelian particle systems and self-organized criticality'''


A lattice gauge theory is a random assignment of spins to edges of a lattice that offers a more tractable model in which to study path integrals that appear in particle physics. We demonstrate the existence of a phase transition corresponding to deconfinement in a simplified model called Ising lattice gauge theory on the cubical lattice Z^3. Our methods involve studying the topology of a random 2-dimensional cubical complex on Z^3 called random-cluster plaquette percolation, which in turn can be reduced to the study of a random dual graph. No prior background in topology or physics will be assumed. This is based on joint work with Benjamin Schweinhart.
Abstract: Activated random walk (ARW) is an 'abelian' particle system that conjecturally exhibits complex behaviors which were first described by physicists in the 1990s, namely self organized criticality and hyperuniformity. I will discuss recent results for ARW and the stochastic sandpile (a related model) on Z and other graphs, plus many open questions.


== October 26, 2023: Yuchen Liao (UW - Madison) ==
== October 31, 2024: David Clancy (UW-Madison) ==
'''Large deviations for the deformed Polynuclear growth'''
'''Likelihood landscape on a known phylogeny'''


The polynuclear growth model (PNG) is a prototypical example of random interface growth among the Kardar-Parisi-Zhang universality class. In this talk I will discuss a q-deformation of the PNG model recently introduced by Aggarwal-Borodin-Wheeler. We are mainly interested in the large time large deviations of the one-point distribution under narrow-wedge (droplet) initial data, i.e., the rare events that the height function at time t being much larger (upper tail) or much smaller (lower tail) than its expected value. Large deviation principles with speed t and t^2 are established for the upper and lower tails, respectively. The upper tail rate function is computed explicitly and is independent of q. The lower tail rate function is described through a variational problem and shows nontrivial q-dependence.  Based on joint  work with Matteo Mucciconi and Sayan Das.
Abstract: Over time, ancestral populations evolve to become separate species. We can represent this history as a tree with edge lengths where the leaves are the modern-day species. If we know the precise topology of the tree (i.e. the precise evolutionary relationship between all the species), then we can imagine traits (their presence or absence) being passed down according to a symmetric 2-state continuous-time Markov chain. The branch length becomes the probability a parent species has a trait while the child species does not. This length is unknown, but researchers have observed they can get pretty good estimates using maximum likelihood estimation and only the leaf data despite the fact that the number of critical points for the log-likelihood grows exponentially fast in the size of the tree. In this talk, I will discuss why this MLE approach works by showing that the population log-likelihood is strictly concave and smooth in a neighborhood around the true branch length parameters and the size.


== November 2, 2023: [http://homepages.math.uic.edu/~couyang/ Cheng Ouyang] (U. Illinois Chicago) ==
This talk is based on joint work with Hanbaek Lyu, Sebastien Roch and Allan Sly.
'''Colored noise and parabolic Anderson model on Torus'''


We construct an intrinsic family of Gaussian noises on compact Riemannian manifolds which we call the colored noise on manifolds. It consists of noises with a wide range of singularities. Using this family of noises, we study the parabolic Anderson model on compact manifolds. To begin with, we started our investigation on a flat torus and established existence and uniqueness of the solution, as well as some sharp bounds on the second moment of the solution. In particular, our methodology does not necessarily rely on Fourier analysis and can be applied to study the PAM on more general manifolds.
== November 7, 2024: Zoe Huang (UNC Chapel Hill) ==
'''Cutoff for Cayley graphs of nilpotent groups'''


== November 9, 2023: [https://scottandrewsmith.github.io/ Scott Smith] (Chinese Academy of Sciences) ==
Abstract: Abstract:  We consider the random Cayley graphs of a sequence of finite nilpotent groups of diverging sizes $G=G(n)$, whose ranks and nilpotency classes are uniformly bounded. For some $k=k(n)$ such that $1\ll\log k \ll \log |G|$, we pick a random set of generators $S=S(n)$ by sampling $k$ elements $Z_1,\ldots,Z_k$ from $G$ uniformly at random with replacement, and set $S:=\{Z_j^{\pm 1}:1 \le j\le k \}$. We show that the simple random walk on Cay$(G,S)$ exhibits cutoff with high probability. Some of our results apply to a general set of generators. Namely, we show that there is a constant $c>0$, depending only on the rank and the nilpotency class of $G$, such that for all symmetric sets of generators $S$ of size at most $ \frac{c\log |G|}{\log \log |G|}$, the spectral gap and the $\varepsilon$-mixing time of the simple random walk $X=(X_t)_{t\geq 0}$ on Cay$(G,S)$ are asymptotically the same as those of the projection of $X$ to the abelianization of $G$, given by $[G,G]X_t$. In particular, $X$ exhibits cutoff if and only if its projection does. Based on joint work with Jonathan Hermon.
'''A stochastic analysis viewpoint on the master loop equation for lattice Yang-Mills'''


I will discuss the master loop equation for lattice Yang-Mills, introduced in the physics literature by Makeenko/Migdal (1979).  A more precise formulation and proof was given by Chatterjee (2019) for SO(N) and later by Jafarov for SU(N).  I will explain how the loop equation arises naturally from the Langevin dynamic for the lattice Yang-Mills measure.  Based on joint work with Hao Shen and Rongchan Zhu.
== November 14, 2024: Nabarun Deb (University of Chicago) ==
Mean-Field fluctuations in Ising models and posterior prediction intervals in low signal-to-noise ratio regimes


== November 16, 2023: [https://math.mit.edu/~mnicolet/ Matthew Nicoletti] (MIT) ==
Ising models have become central in probability, statistics, and machine learning. They naturally appear in the posterior distribution of regression coefficients under the linear model $Y = X\beta + \epsilon$, where $\epsilon \sim N(0, \sigma^2 I_n)$. This talk explores fluctuations of specific linear statistics under the Ising model, with a focus on applications in Bayesian linear regression.
'''Colored Interacting Particle Systems on the Ring: Stationary Measures from Yang--Baxter Equation'''


Recently, there has been much progress in understanding stationary measures for colored (also called multi-species or multi-type) interacting particle systems, motivated by asymptotic phenomena and rich underlying algebraic and combinatorial structures (such as nonsymmetric Macdonald polynomials).
In the first part, we examine Ising models on "dense regular" graphs and characterize the limiting distribution of average magnetization across various temperature and magnetization regimes, extending previous results beyond the Curie-Weiss (complete graph) case. In the second part, we analyze posterior prediction intervals for linear statistics in low signal-to-noise ratio (SNR) scenarios, also known as the contiguity regime. Here, unlike standard Bernstein-von Mises results, the limiting distributions are highly sensitive to the choice of prior. We illustrate this dependency by presenting limiting laws under both correctly specified and misspecified priors.


    In this work, we present a unified approach to constructing stationary measures for several colored particle systems on the ring and the line, including (1)~the Asymmetric Simple Exclusion Process (mASEP); (2)~the $q$-deformed Totally Asymmetric Zero Range Process (TAZRP) also known as the $q$-Boson particle system; (3)~the $q$-deformed Pushing Totally Asymmetric Simple Exclusion Process ($q$-PushTASEP). Our method is based on integrable stochastic vertex models and the Yang--Baxter equation. We express the stationary measures as partition functions of new ``queue vertex models<nowiki>''</nowiki> on the cylinder. The stationarity property is a direct consequence of the Yang--Baxter equation. This is joint work with A. Aggarwal and L. Petrov.
This talk is based on joint work with Sumit Mukherjee and Seunghyun Li.


== November 23, 2023: No Seminar ==
== November 21, 2024: Reza Gheissari (Northwestern) ==
'''No seminar. Thanksgiving.'''
'''Wetting and pre-wetting in (2+1)D solid-on-solid interfaces'''


== November 30, 2023: [http://web.mit.edu/youngtak/www/homepage.html Youngtak Sohn] (MIT) ==
The (d+1)D-solid-on-solid model is a simple model of integer-valued height functions that approximates the low-temperature interface of an Ising model. When $d\ge 2$, with zero-boundary conditions, at low temperatures the surface is localized about height $0$, but when constrained to take only non-negative values entropic repulsion pushes it to take typical heights of $O(\log n)$.  I will describe the mechanism of entropic repulsion, and present results on how the picture changes when one introduces a competing force trying to keep the interface localized (either an external field or a reward for points where the height is exactly zero). Along the way, I will outline rich predictions for the shapes of level curves, and for metastability phenomena in the Glauber dynamics. Based on joint work with Eyal Lubetzky and Joseph Chen.
'''Geometry of random constraint satisfaction problems'''


The framework of constraint satisfaction problem (CSP) captures many fundamental problems in combinatorics and computer science, such as finding a proper coloring of a graph or solving the boolean satisfiability problems. Solving a CSP can often be NP-hard in the worst-case scenario. To study the typical cases of CSPs, statistical physicists have proposed a detailed picture of the solution space for random CSPs based on non-rigorous methods from spin glass theory. In this talk, I will first survey the conjectured rich phase diagrams of random CSPs in the one-step replica symmetry breaking (1RSB) universality class. Then, I will describe the recent progress in understanding the global and local geometry of solutions, particularly in random regular NAE-SAT problem.
== November 28, 2024: Thanksgiving ==
No seminar


This talk is based on joint works with Danny Nam and Allan Sly.
== December 5, 2024: Erik Bates (NC State) ==


== December 7, 2023: Minjae Park (U. Chicago) ==
'''Parisi formulas in multi-species and vector spin glass models'''
'''Yang-Mills theory and random surfaces'''


I will talk about some recent work on Yang-Mills theory for classical Lie groups and its relationship to the theory of random surfaces. In particular, I will explain how Wilson loop expectations in lattice Yang-Mills can be expressed as sums over embedded planar maps for any matrix dimension N ≥ 1, any inverse temperature β > 0, and any lattice dimension d ≥ 2. The main idea is from my similar result for 2D continuum Yang-Mills (with Joshua Pfeffer, Scott Sheffield, and Pu Yu), and it gives alternative derivations and interpretations of several recent theorems including Brownian motion limits (Dahlqvist), lattice string trajectories (Chatterjee and Jafarov), and surface sums (Magee and Puder). Based on joint work with Sky Cao and Scott Sheffield.
The expression "Parisi formula" refers to a variational formula postulated by Parisi in 1980 to give the limiting free energy of the Sherrington--Kirkpatrick (SK) spin glass.  The SK model was originally conceived as a mean-field description for disordered magnetism, and has since become a mathematical prototype for frustrated disordered systems and high-complexity functions.  In recent years, there has been an effort to extend the Parisi framework to various generalizations of the SK model, raising new physical questions met with fresh mathematical challenges.  In this talk, I will share some developments in this evolving story.  Based on joint works with Leila Sloman and Youngtak Sohn.

Latest revision as of 20:39, 22 November 2024

Back to Probability Group

  • When: Thursdays at 2:30 pm
  • Where: 901 Van Vleck Hall
  • Organizers: Hanbaek Lyu, Tatyana Shcherbyna, David Clancy
  • To join the probability seminar mailing list: email probsem+subscribe@g-groups.wisc.edu.
  • To subscribe seminar lunch announcements: email lunchwithprobsemspeaker+subscribe@g-groups.wisc.edu

Past Seminars


Fall 2024

Thursdays at 2:30 PM either in 901 Van Vleck Hall or on Zoom

We usually end for questions at 3:20 PM.

September 5, 2024:

No seminar

September 12, 2024: Hongchang Ji (UW-Madison)

Spectral edge of non-Hermitian random matrices

We report recent progress on spectra of so-called deformed i.i.d. matrices. They are square non-Hermitian random matrices of the form $A+X$ where $X$ has centered i.i.d. entries and $A$ is a deterministic bias, and $A$ and $X$ are on the same scale so that their contributions to the spectrum of $A+X$ are comparable. Under this setting, we present two recent results concerning universal patterns arising in eigenvalue statistics of $A+X$ around its boundary, on macroscopic and microscopic scales. The first result shows that the macroscopic eigenvalue density of $A+X$ typically has a jump discontinuity around the boundary of its support, which is a distinctive feature of $X$ by the \emph{circular law}. The second result is edge universality for deformed non-Hermitian matrices; it shows that the local eigenvalue statistics of $A+X$ around a typical (jump) boundary point is universal, i.e., matches with those of a Ginibre matrix $X$ with i.i.d. standard Gaussian entries.

Based on joint works with A. Campbell, G. Cipolloni, and L. Erd\H{o}s.


September 19, 2024: Miklos Racz (Northwestern)

The largest common subtree of uniform attachment trees

Consider two independent uniform attachment trees with n nodes each -- how large is their largest common subtree? Our main result gives a lower bound of n^{0.83}. We also give some upper bounds and bounds for general random tree growth models. This is based on joint work with Johannes Bäumler, Bas Lodewijks, James Martin, Emil Powierski, and Anirudh Sridhar.

September 26, 2024: Dmitry Krachun (Princeton)

A glimpse of universality in critical planar lattice models

Abstract: Many models of statistical mechanics are defined on a lattice, yet they describe behaviour of objects in our seemingly isotropic world. It is then natural to ask why, in the small mesh size limit, the directions of the lattice disappear. Physicists' answer to this question is partially given by the Universality hypothesis, which roughly speaking states that critical properties of a physical system do not depend on the lattice or fine properties of short-range interactions but only depend on the spatial dimension and the symmetry of the possible spins. Justifying the reasoning behind the universality hypothesis mathematically seems virtually impossible and so other ideas are needed for a rigorous derivation of universality even in the simplest of setups.

In this talk I will explain some ideas behind the recent result which proves rotational invariance of the FK-percolation model. In doing so, we will see how rotational invariance is related to universality among a certain one-dimensional family of planar lattices and how the latter can be proved using exact integrability of the six-vertex model using Bethe ansatz.

Based on joint works with Hugo Duminil-Copin, Karol Kozlowski, Ioan Manolescu, Mendes Oulamara, and Tatiana Tikhonovskaia.

October 3, 2024: Joshua Cape (UW-Madison)

A new random matrix: motivation, properties, and applications

In this talk, we introduce and study a new random matrix whose entries are dependent and discrete valued. This random matrix is motivated by problems in multivariate analysis and nonparametric statistics. We establish its asymptotic properties and provide comparisons to existing results for independent entry random matrix models. We then apply our results to two problems: (i) community detection, and (ii) principal submatrix localization. Based on joint work with Jonquil Z. Liao.

October 10, 2024: Midwest Probability Colloquium

N/A

October 17, 2024: Kihoon Seong (Cornell)

Gaussian fluctuations of focusing Φ^4 measure around the soliton manifold

I will explain the central limit theorem for the focusing Φ^4 measure in the infinite volume limit. The focusing Φ^4 measure, an invariant Gibbs measure for the nonlinear Schrödinger equation, was first studied by Lebowitz, Rose, and Speer (1988), and later extended by Bourgain (1994), Brydges and Slade (1996), and Carlen, Fröhlich, and Lebowitz (2016).

Rider previously showed that this measure is strongly concentrated around a family of minimizers of the associated Hamiltonian, known as the soliton manifold. In this talk, I will discuss the fluctuations around this soliton manifold. Specifically, we show that the scaled field under the focusing Φ^4 measure converges to white noise in the infinite volume limit, thus identifying the next-order fluctuations, as predicted by Rider.

This talk is based on joint work with Philippe Sosoe (Cornell).

October 24, 2024: Jacob Richey (Alfred Renyi Institute)

Stochastic abelian particle systems and self-organized criticality

Abstract: Activated random walk (ARW) is an 'abelian' particle system that conjecturally exhibits complex behaviors which were first described by physicists in the 1990s, namely self organized criticality and hyperuniformity. I will discuss recent results for ARW and the stochastic sandpile (a related model) on Z and other graphs, plus many open questions.

October 31, 2024: David Clancy (UW-Madison)

Likelihood landscape on a known phylogeny

Abstract: Over time, ancestral populations evolve to become separate species. We can represent this history as a tree with edge lengths where the leaves are the modern-day species. If we know the precise topology of the tree (i.e. the precise evolutionary relationship between all the species), then we can imagine traits (their presence or absence) being passed down according to a symmetric 2-state continuous-time Markov chain. The branch length becomes the probability a parent species has a trait while the child species does not. This length is unknown, but researchers have observed they can get pretty good estimates using maximum likelihood estimation and only the leaf data despite the fact that the number of critical points for the log-likelihood grows exponentially fast in the size of the tree. In this talk, I will discuss why this MLE approach works by showing that the population log-likelihood is strictly concave and smooth in a neighborhood around the true branch length parameters and the size.

This talk is based on joint work with Hanbaek Lyu, Sebastien Roch and Allan Sly.

November 7, 2024: Zoe Huang (UNC Chapel Hill)

Cutoff for Cayley graphs of nilpotent groups

Abstract: Abstract:  We consider the random Cayley graphs of a sequence of finite nilpotent groups of diverging sizes $G=G(n)$, whose ranks and nilpotency classes are uniformly bounded. For some $k=k(n)$ such that $1\ll\log k \ll \log |G|$, we pick a random set of generators $S=S(n)$ by sampling $k$ elements $Z_1,\ldots,Z_k$ from $G$ uniformly at random with replacement, and set $S:=\{Z_j^{\pm 1}:1 \le j\le k \}$. We show that the simple random walk on Cay$(G,S)$ exhibits cutoff with high probability. Some of our results apply to a general set of generators. Namely, we show that there is a constant $c>0$, depending only on the rank and the nilpotency class of $G$, such that for all symmetric sets of generators $S$ of size at most $ \frac{c\log |G|}{\log \log |G|}$, the spectral gap and the $\varepsilon$-mixing time of the simple random walk $X=(X_t)_{t\geq 0}$ on Cay$(G,S)$ are asymptotically the same as those of the projection of $X$ to the abelianization of $G$, given by $[G,G]X_t$. In particular, $X$ exhibits cutoff if and only if its projection does. Based on joint work with Jonathan Hermon.

November 14, 2024: Nabarun Deb (University of Chicago)

Mean-Field fluctuations in Ising models and posterior prediction intervals in low signal-to-noise ratio regimes

Ising models have become central in probability, statistics, and machine learning. They naturally appear in the posterior distribution of regression coefficients under the linear model $Y = X\beta + \epsilon$, where $\epsilon \sim N(0, \sigma^2 I_n)$. This talk explores fluctuations of specific linear statistics under the Ising model, with a focus on applications in Bayesian linear regression.

In the first part, we examine Ising models on "dense regular" graphs and characterize the limiting distribution of average magnetization across various temperature and magnetization regimes, extending previous results beyond the Curie-Weiss (complete graph) case. In the second part, we analyze posterior prediction intervals for linear statistics in low signal-to-noise ratio (SNR) scenarios, also known as the contiguity regime. Here, unlike standard Bernstein-von Mises results, the limiting distributions are highly sensitive to the choice of prior. We illustrate this dependency by presenting limiting laws under both correctly specified and misspecified priors.

This talk is based on joint work with Sumit Mukherjee and Seunghyun Li.

November 21, 2024: Reza Gheissari (Northwestern)

Wetting and pre-wetting in (2+1)D solid-on-solid interfaces

The (d+1)D-solid-on-solid model is a simple model of integer-valued height functions that approximates the low-temperature interface of an Ising model. When $d\ge 2$, with zero-boundary conditions, at low temperatures the surface is localized about height $0$, but when constrained to take only non-negative values entropic repulsion pushes it to take typical heights of $O(\log n)$.  I will describe the mechanism of entropic repulsion, and present results on how the picture changes when one introduces a competing force trying to keep the interface localized (either an external field or a reward for points where the height is exactly zero). Along the way, I will outline rich predictions for the shapes of level curves, and for metastability phenomena in the Glauber dynamics. Based on joint work with Eyal Lubetzky and Joseph Chen.

November 28, 2024: Thanksgiving

No seminar

December 5, 2024: Erik Bates (NC State)

Parisi formulas in multi-species and vector spin glass models

The expression "Parisi formula" refers to a variational formula postulated by Parisi in 1980 to give the limiting free energy of the Sherrington--Kirkpatrick (SK) spin glass.  The SK model was originally conceived as a mean-field description for disordered magnetism, and has since become a mathematical prototype for frustrated disordered systems and high-complexity functions.  In recent years, there has been an effort to extend the Parisi framework to various generalizations of the SK model, raising new physical questions met with fresh mathematical challenges.  In this talk, I will share some developments in this evolving story.  Based on joint works with Leila Sloman and Youngtak Sohn.