Probability Seminar: Difference between revisions

From DEV UW-Math Wiki
Jump to navigation Jump to search
Dclancy3 (talk | contribs)
 
(89 intermediate revisions by 10 users not shown)
Line 1: Line 1:
__NOTOC__
__NOTOC__
[[Probability | Back to Probability Group]]
[[Probability | Back to Probability Group]]
* '''When''': Thursdays at 2:30 pm
* '''Where''': 901 Van Vleck Hall
* '''Organizers''': Hongchang Ji, Ander Aguirre, Hai-Xiao Wang
* '''To join the probability seminar mailing list:''' email probsem+subscribe@g-groups.wisc.edu.
* '''To subscribe seminar lunch announcements:''' email lunchwithprobsemspeaker+subscribe@g-groups.wisc.edu


[[Past Seminars]]
[[Past Seminars]]


= Fall 2023 =
== Fall 2025 ==
 
<b>Thursdays at 2:30 PM either in 901 Van Vleck Hall or on Zoom</b>
<b>Thursdays at 2:30 PM either in 901 Van Vleck Hall or on Zoom</b>


We usually end for questions at 3:20 PM.
We usually end for questions at 3:20 PM.


== September 14, 2023: [https://www.mathjunge.com/ Matthew Junge] (CUNY) ==
== September 4, 2025: No seminar ==
'''The frog model on trees'''
 
== September 11, 2025: David Renfrew (Binghamton U.) ==


The frog model describes random activation and spread. Think combustion or an epidemic. I have studied these dynamics on ''d''-ary trees for ten years. I will discuss our progress and what remains to be done.


== September 21, 2023: [https://yierlin.me/ Yier Lin] (U. Chicago) ==
'''Singularities in the spectrum of random block matrices'''
'''Large Deviations of the KPZ Equation and Most Probable Shapes'''


We consider the density of states of structured Hermitian and non-Hermitian random matrices with a variance profile. As the dimension tends to infinity the associated eigenvalue density can develop a singularity at the origin. The severity of this singularity depends on the relative positions of the zero submatrices. We provide a classification of all possible singularities and determine the exponent in the density blow-up.


The KPZ equation is a stochastic PDE that plays a central role in a class of random growth phenomena. In this talk, we will explore the Freidlin-Wentzell LDP for the KPZ equation through the lens of the variational principle. Additionally, we will explain how to extract various limits of the most probable shape of the KPZ equation using the variational formula. We will also discuss an alternative approach for studying these quantities using the method of moments. This talk is based in part on joint works with Pierre Yves Gaudreau Lamarre and Li-Cheng Tsai.
== September 18, 2025: JE Paguyo (McMaster U.) ==
'''Asymptotic behavior of the hierarchical Pitman-Yor and Dirichlet processes'''


== September 28, 2023: [https://warwick.ac.uk/fac/sci/statistics/staff/academic-research/rosati/ Tommaso Rosati] (U. Warwick) ==
The Pitman-Yor process is a discrete random measure specified by a concentration parameter, discount parameter, and base distribution, and is used as a fundamental prior in Bayesian nonparametrics. The hierarchical Pitman-Yor process (HPYP) is a generalization obtained by randomizing the base distribution through a draw from another Pitman-Yor process. It is motivated by the study of groups of clustered data, where the group specific Pitman-Yor processes are linked through an intergroup Pitman-Yor process. Setting both discount parameters to zero recovers the celebrated hierarchical Dirichlet process (HDP), first introduced by Teh et al.
'''The Allen-Cahn equation with weakly critical initial datum'''
In this talk, we discuss our recent work on the asymptotic behavior of the HPYP and HDP. First, we establish limit theorems associated with the power sum symmetric polynomials for the vector of weights of the HDP as the concentration parameters tend to infinity. These objects are related to the homozygosity in population genetics, the Simpson diversity index in ecology, and the Herfindahl-Hirschman index in economics. Second, we consider a random sample of size $N$ from a population whose type distribution is given by the vector of weights of the HPYP and study the large $N$ asymptotic behavior of the number of clusters in the sample. Our approach relies on a random sample size representation of the number of clusters through the corresponding non-hierarchical process. This talk is based on joint work with Stefano Favaro and Shui Feng.


We study the 2D Allen-Cahn with white noise initial datum. In a weak coupling regime, where the nonlinearity is damped in relation to the smoothing of the initial condition, we prove Gaussian fluctuations. The effective variance that appears can be described as the solution to an ODE. Our proof builds on a Wild expansion of the solution, which is controlled through precise combinatorial estimates. Joint work with Simon Gabriel and Nikolaos Zygouras.
== September 25, 2025: Chris Janjigian (Purdue U.) ==


== October 5, 2023: ==
== October 2, 2025: Elliot Paquette (McGill U.) ==
'''Abstract, title: TBA'''


== October 12, 2023: No Seminar ([https://sites.math.northwestern.edu/mwp/ Midwest Probability Colloquium]) ==
== October 9, 2025: No seminar (Midwest Probability Colloquium) ==


== October 19, 2023: [https://www.paulduncan.net/ Paul Duncan] (Hebrew University of Jerusalem) ==
== October 16, 2025: Zachary Selk (Florida State U.) ==
'''Deconfinement in Ising Lattice Gauge Theory'''


A lattice gauge theory is a random assignment of spins to edges of a lattice that offers a more tractable model in which to study path integrals that appear in particle physics. We demonstrate the existence of a phase transition corresponding to deconfinement in a simplified model called Ising lattice gauge theory on the cubical lattice Z^3. Our methods involve studying the topology of a random 2-dimensional cubical complex on Z^3 called random-cluster plaquette percolation, which in turn can be reduced to the study of a random dual graph. No prior background in topology or physics will be assumed. This is based on joint work with Benjamin Schweinhart.
'''<br />On the Onsager-Machlup Function for the \Phi^4 Measure'''


== October  26, 2023: Yuchen Liao (UW - Madison) ==
The \Phi^4 measure is a measure arising in effective quantum field theory as arguably the simplest example of a nontrivial QFT, modelling the self-interaction of a single scalar quantum field. This measure can be constructed through a procedure known as stochastic quantization. Stochastic quantization seeks to construct a measure on an infinite dimensional space with a given Gibbs-type ``density function" as the invariant measure of a stochastic PDE, in analogy with Langevin dynamics of stochastic ODEs. Both the \Phi^4 measure and its associated stochastic quantization PDE involve nonlinearities of distributions, necessitating renormalization procedures via tools like Wick calculus, regularity structures or paracontrolled calculus. Although the \Phi^4 measure has been constructed in dimensions 1,2 and 3, the question of whether these measures have the desired ``density function" remains open. Although in infinite dimensions, density functions are typically thought to not exist as there is no reference Lebesgue measure, there is a notion of a probability density function that extends to infinite dimensions called the Onsager-Machlup (OM) functional. One pathology of OM theory is that different metrics can lead to different OM functionals, or OM functionals can fail to exist under reasonable metrics. In a joint work with Ioannis Gasteratos (TU Berlin), we study the OM functional for the \Phi^4 measure. In dimension 1, the OM functional is what is desired under naive choices of metrics. In dimension 2, the OM functional is what is desired if we choose a metric analogous to the rough paths metric. In dimension 3, naive approaches don't work and the situation is complicated.
'''Abstract, title: TBA'''


== November 2, 2023: [http://homepages.math.uic.edu/~couyang/ Cheng Ouyang] (U. Illinois Chicago) ==
'''Abstract, title: TBA'''


== November 9, 2023: [https://scottandrewsmith.github.io/ Scott Smith] (Chinese Academy of Sciences) ==
==October 23, 2025: Alex Dunlap (Duke U.)==
'''Abstract, title: TBA'''


== November 16, 2023: Matthew Nicoletti (MIT) ==
==October 30, 2025: Ander Aguirre (UW-Madison)==
'''Abstract, title: TBA'''


== November 23, 2023: No Seminar ==
'''Edgeworth expansion and random polynomials'''
'''No seminar. Thanksgiving.'''


== November 30, 2023: [http://web.mit.edu/youngtak/www/homepage.html Youngtak Sohn] (MIT) ==
==November 6, 2025: Sudeshna Bhattacharjee (Indian Institute of Science)==
'''Abstract, title: TBA'''


== December 7, 2023: Minjae Park (U. Chicago) ==
== November 13, 2025: Jiaoyang Huang (U. Penn) ==
'''Abstract, title: TBA'''

Latest revision as of 01:17, 2 September 2025

Back to Probability Group

  • When: Thursdays at 2:30 pm
  • Where: 901 Van Vleck Hall
  • Organizers: Hongchang Ji, Ander Aguirre, Hai-Xiao Wang
  • To join the probability seminar mailing list: email probsem+subscribe@g-groups.wisc.edu.
  • To subscribe seminar lunch announcements: email lunchwithprobsemspeaker+subscribe@g-groups.wisc.edu

Past Seminars

Fall 2025

Thursdays at 2:30 PM either in 901 Van Vleck Hall or on Zoom

We usually end for questions at 3:20 PM.

September 4, 2025: No seminar

September 11, 2025: David Renfrew (Binghamton U.)

Singularities in the spectrum of random block matrices

We consider the density of states of structured Hermitian and non-Hermitian random matrices with a variance profile. As the dimension tends to infinity the associated eigenvalue density can develop a singularity at the origin. The severity of this singularity depends on the relative positions of the zero submatrices. We provide a classification of all possible singularities and determine the exponent in the density blow-up.

September 18, 2025: JE Paguyo (McMaster U.)

Asymptotic behavior of the hierarchical Pitman-Yor and Dirichlet processes

The Pitman-Yor process is a discrete random measure specified by a concentration parameter, discount parameter, and base distribution, and is used as a fundamental prior in Bayesian nonparametrics. The hierarchical Pitman-Yor process (HPYP) is a generalization obtained by randomizing the base distribution through a draw from another Pitman-Yor process. It is motivated by the study of groups of clustered data, where the group specific Pitman-Yor processes are linked through an intergroup Pitman-Yor process. Setting both discount parameters to zero recovers the celebrated hierarchical Dirichlet process (HDP), first introduced by Teh et al. In this talk, we discuss our recent work on the asymptotic behavior of the HPYP and HDP. First, we establish limit theorems associated with the power sum symmetric polynomials for the vector of weights of the HDP as the concentration parameters tend to infinity. These objects are related to the homozygosity in population genetics, the Simpson diversity index in ecology, and the Herfindahl-Hirschman index in economics. Second, we consider a random sample of size $N$ from a population whose type distribution is given by the vector of weights of the HPYP and study the large $N$ asymptotic behavior of the number of clusters in the sample. Our approach relies on a random sample size representation of the number of clusters through the corresponding non-hierarchical process. This talk is based on joint work with Stefano Favaro and Shui Feng.

September 25, 2025: Chris Janjigian (Purdue U.)

October 2, 2025: Elliot Paquette (McGill U.)

October 9, 2025: No seminar (Midwest Probability Colloquium)

October 16, 2025: Zachary Selk (Florida State U.)


On the Onsager-Machlup Function for the \Phi^4 Measure

The \Phi^4 measure is a measure arising in effective quantum field theory as arguably the simplest example of a nontrivial QFT, modelling the self-interaction of a single scalar quantum field. This measure can be constructed through a procedure known as stochastic quantization. Stochastic quantization seeks to construct a measure on an infinite dimensional space with a given Gibbs-type ``density function" as the invariant measure of a stochastic PDE, in analogy with Langevin dynamics of stochastic ODEs. Both the \Phi^4 measure and its associated stochastic quantization PDE involve nonlinearities of distributions, necessitating renormalization procedures via tools like Wick calculus, regularity structures or paracontrolled calculus. Although the \Phi^4 measure has been constructed in dimensions 1,2 and 3, the question of whether these measures have the desired ``density function" remains open. Although in infinite dimensions, density functions are typically thought to not exist as there is no reference Lebesgue measure, there is a notion of a probability density function that extends to infinite dimensions called the Onsager-Machlup (OM) functional. One pathology of OM theory is that different metrics can lead to different OM functionals, or OM functionals can fail to exist under reasonable metrics. In a joint work with Ioannis Gasteratos (TU Berlin), we study the OM functional for the \Phi^4 measure. In dimension 1, the OM functional is what is desired under naive choices of metrics. In dimension 2, the OM functional is what is desired if we choose a metric analogous to the rough paths metric. In dimension 3, naive approaches don't work and the situation is complicated.


October 23, 2025: Alex Dunlap (Duke U.)

October 30, 2025: Ander Aguirre (UW-Madison)

Edgeworth expansion and random polynomials

November 6, 2025: Sudeshna Bhattacharjee (Indian Institute of Science)

November 13, 2025: Jiaoyang Huang (U. Penn)