Probability Seminar: Difference between revisions

From DEV UW-Math Wiki
Jump to navigation Jump to search
Ewbates (talk | contribs)
No edit summary
 
(121 intermediate revisions by 11 users not shown)
Line 1: Line 1:
__NOTOC__
__NOTOC__
[[Probability | Back to Probability Group]]
[[Probability | Back to Probability Group]]
* '''When''': Thursdays at 2:30 pm
* '''Where''': 901 Van Vleck Hall
* '''Organizers''': Hongchang Ji, Ander Aguirre, Hai-Xiao Wang
* '''To join the probability seminar mailing list:''' email probsem+subscribe@g-groups.wisc.edu.
* '''To subscribe seminar lunch announcements:''' email lunchwithprobsemspeaker+subscribe@g-groups.wisc.edu


[[Past Seminars]]
[[Past Seminars]]


= Spring 2023 =
== Fall 2025 ==


<b>Thursdays at 2:30 PM either in 901 Van Vleck Hall or on Zoom</b>  
<b>Thursdays at 2:30 PM either in 901 Van Vleck Hall or on Zoom</b>


We usually end for questions at 3:20 PM.
We usually end for questions at 3:20 PM.


[https://uwmadison.zoom.us/j/91828707031?pwd=YUJXMUJkMDlPR0VRdkRCQVJtVndIdz09 ZOOM LINK. Valid only for online seminars.]
== September 4, 2025: No seminar ==
 
== September 11, 2025: David Renfrew (Binghamton U.) ==
 
 
'''Singularities in the spectrum of random block matrices'''
 
We consider the density of states of structured Hermitian and non-Hermitian random matrices with a variance profile. As the dimension tends to infinity the associated eigenvalue density can develop a singularity at the origin. The severity of this singularity depends on the relative positions of the zero submatrices. We provide a classification of all possible singularities and determine the exponent in the density blow-up.
 
== September 18, 2025: JE Paguyo (McMaster U.) ==
'''Asymptotic behavior of the hierarchical Pitman-Yor and Dirichlet processes'''
 
The Pitman-Yor process is a discrete random measure specified by a concentration parameter, discount parameter, and base distribution, and is used as a fundamental prior in Bayesian nonparametrics. The hierarchical Pitman-Yor process (HPYP) is a generalization obtained by randomizing the base distribution through a draw from another Pitman-Yor process. It is motivated by the study of groups of clustered data, where the group specific Pitman-Yor processes are linked through an intergroup Pitman-Yor process. Setting both discount parameters to zero recovers the celebrated hierarchical Dirichlet process (HDP), first introduced by Teh et al.
In this talk, we discuss our recent work on the asymptotic behavior of the HPYP and HDP. First, we establish limit theorems associated with the power sum symmetric polynomials for the vector of weights of the HDP as the concentration parameters tend to infinity. These objects are related to the homozygosity in population genetics, the Simpson diversity index in ecology, and the Herfindahl-Hirschman index in economics. Second, we consider a random sample of size $N$ from a population whose type distribution is given by the vector of weights of the HPYP and study the large $N$ asymptotic behavior of the number of clusters in the sample. Our approach relies on a random sample size representation of the number of clusters through the corresponding non-hierarchical process. This talk is based on joint work with Stefano Favaro and Shui Feng.
 
== September 25, 2025: Chris Janjigian (Purdue U.) ==
 
== October 2, 2025: Elliot Paquette (McGill U.) ==


If you would like to sign up for the email list to receive seminar announcements then please join [https://groups.google.com/a/g-groups.wisc.edu/forum/#!forum/probsem our group].
== October 9, 2025: No seminar (Midwest Probability Colloquium) ==


== October 16, 2025: Zachary Selk (Florida State U.) ==


== January 26, 2023, in person: [https://sites.google.com/wisc.edu/evan-sorensen?pli=1 Evan Sorensen] (UW-Madison)    ==
'''<br />On the Onsager-Machlup Function for the \Phi^4 Measure'''
'''The stationary horizon as a universal object for KPZ models'''
The last 5-10 years has seen remarkable progress in constructing the central objects of the KPZ universality class, namely the KPZ fixed point and directed landscape. In this talk, I will discuss a third central object known as the stationary horizon (SH). The SH is a coupling of Brownian motions with drifts, indexed by the real line, and it describes the unique coupled invariant measures for the directed landscape. I will talk about how the SH appears as the scaling limit of several models, including Busemann processes in last-passage percolation and the TASEP speed process. I will also discuss how the SH helps to describe the collection of infinite geodesics in all directions for the directed landscape. Based on joint work with Timo Seppäläinen and Ofer Busani.


== February 2, 2023, in person: [https://mathjinsukim.com/ Jinsu Kim] (POSTECH)    ==
The \Phi^4 measure is a measure arising in effective quantum field theory as arguably the simplest example of a nontrivial QFT, modelling the self-interaction of a single scalar quantum field. This measure can be constructed through a procedure known as stochastic quantization. Stochastic quantization seeks to construct a measure on an infinite dimensional space with a given Gibbs-type ``density function" as the invariant measure of a stochastic PDE, in analogy with Langevin dynamics of stochastic ODEs. Both the \Phi^4 measure and its associated stochastic quantization PDE involve nonlinearities of distributions, necessitating renormalization procedures via tools like Wick calculus, regularity structures or paracontrolled calculus. Although the \Phi^4 measure has been constructed in dimensions 1,2 and 3, the question of whether these measures have the desired ``density function" remains open. Although in infinite dimensions, density functions are typically thought to not exist as there is no reference Lebesgue measure, there is a notion of a probability density function that extends to infinite dimensions called the Onsager-Machlup (OM) functional. One pathology of OM theory is that different metrics can lead to different OM functionals, or OM functionals can fail to exist under reasonable metrics. In a joint work with Ioannis Gasteratos (TU Berlin), we study the OM functional for the \Phi^4 measure. In dimension 1, the OM functional is what is desired under naive choices of metrics. In dimension 2, the OM functional is what is desired if we choose a metric analogous to the rough paths metric. In dimension 3, naive approaches don't work and the situation is complicated.
'''Fast and slow mixing of continuous-time Markov chains with polynomial rates'''
Continuous-time Markov chains on infinite positive integer grids with polynomial rates are often used in modeling queuing systems, molecular counts of small-size biological systems, etc. In this talk, we will discuss continuous-time Markov chains that admit either fast or slow mixing behaviors. For a positive recurrent continuous-time Markov chain, the convergence rate to its stationary distribution is typically investigated with the Lyapunov function method and canonical path method. Recently, we discovered examples that do not lend themselves easily to analysis via those two methods but are shown to have either fast mixing or slow mixing with our new technique. The main ideas of the new methodologies are presented in this talk along with their applications to stochastic biochemical reaction network theory.


== February 9, 2023, in person: [https://www.math.tamu.edu/~jkuan/ Jeffrey Kuan] (Texas A&M)    ==


== February 16, 2023, in person: [http://math.columbia.edu/~milind/ Milind Hegde] (Columbia)   ==
==October 23, 2025: Alex Dunlap (Duke U.)==


== February 23, 2023, in person: [https://sites.math.rutgers.edu/~sc2518/ Swee Hong Chan] (Rutgers)   ==
==October 30, 2025: Ander Aguirre (UW-Madison)==


== March 30, 2023, in person: [http://www.math.toronto.edu/balint/ Bálint Virág] (Toronto)    ==
'''Edgeworth expansion and random polynomials'''


== April 13, 2023, in person: [https://msellke.com/ Mark Sellke] (Amazon)   ==
==November 6, 2025: Sudeshna Bhattacharjee (Indian Institute of Science)==


== May 4, 2023, in person: [https://www.asc.ohio-state.edu/sivakoff.2// David Sivakoff] (Ohio State)   ==
== November 13, 2025: Jiaoyang Huang (U. Penn) ==

Latest revision as of 01:17, 2 September 2025

Back to Probability Group

  • When: Thursdays at 2:30 pm
  • Where: 901 Van Vleck Hall
  • Organizers: Hongchang Ji, Ander Aguirre, Hai-Xiao Wang
  • To join the probability seminar mailing list: email probsem+subscribe@g-groups.wisc.edu.
  • To subscribe seminar lunch announcements: email lunchwithprobsemspeaker+subscribe@g-groups.wisc.edu

Past Seminars

Fall 2025

Thursdays at 2:30 PM either in 901 Van Vleck Hall or on Zoom

We usually end for questions at 3:20 PM.

September 4, 2025: No seminar

September 11, 2025: David Renfrew (Binghamton U.)

Singularities in the spectrum of random block matrices

We consider the density of states of structured Hermitian and non-Hermitian random matrices with a variance profile. As the dimension tends to infinity the associated eigenvalue density can develop a singularity at the origin. The severity of this singularity depends on the relative positions of the zero submatrices. We provide a classification of all possible singularities and determine the exponent in the density blow-up.

September 18, 2025: JE Paguyo (McMaster U.)

Asymptotic behavior of the hierarchical Pitman-Yor and Dirichlet processes

The Pitman-Yor process is a discrete random measure specified by a concentration parameter, discount parameter, and base distribution, and is used as a fundamental prior in Bayesian nonparametrics. The hierarchical Pitman-Yor process (HPYP) is a generalization obtained by randomizing the base distribution through a draw from another Pitman-Yor process. It is motivated by the study of groups of clustered data, where the group specific Pitman-Yor processes are linked through an intergroup Pitman-Yor process. Setting both discount parameters to zero recovers the celebrated hierarchical Dirichlet process (HDP), first introduced by Teh et al. In this talk, we discuss our recent work on the asymptotic behavior of the HPYP and HDP. First, we establish limit theorems associated with the power sum symmetric polynomials for the vector of weights of the HDP as the concentration parameters tend to infinity. These objects are related to the homozygosity in population genetics, the Simpson diversity index in ecology, and the Herfindahl-Hirschman index in economics. Second, we consider a random sample of size $N$ from a population whose type distribution is given by the vector of weights of the HPYP and study the large $N$ asymptotic behavior of the number of clusters in the sample. Our approach relies on a random sample size representation of the number of clusters through the corresponding non-hierarchical process. This talk is based on joint work with Stefano Favaro and Shui Feng.

September 25, 2025: Chris Janjigian (Purdue U.)

October 2, 2025: Elliot Paquette (McGill U.)

October 9, 2025: No seminar (Midwest Probability Colloquium)

October 16, 2025: Zachary Selk (Florida State U.)


On the Onsager-Machlup Function for the \Phi^4 Measure

The \Phi^4 measure is a measure arising in effective quantum field theory as arguably the simplest example of a nontrivial QFT, modelling the self-interaction of a single scalar quantum field. This measure can be constructed through a procedure known as stochastic quantization. Stochastic quantization seeks to construct a measure on an infinite dimensional space with a given Gibbs-type ``density function" as the invariant measure of a stochastic PDE, in analogy with Langevin dynamics of stochastic ODEs. Both the \Phi^4 measure and its associated stochastic quantization PDE involve nonlinearities of distributions, necessitating renormalization procedures via tools like Wick calculus, regularity structures or paracontrolled calculus. Although the \Phi^4 measure has been constructed in dimensions 1,2 and 3, the question of whether these measures have the desired ``density function" remains open. Although in infinite dimensions, density functions are typically thought to not exist as there is no reference Lebesgue measure, there is a notion of a probability density function that extends to infinite dimensions called the Onsager-Machlup (OM) functional. One pathology of OM theory is that different metrics can lead to different OM functionals, or OM functionals can fail to exist under reasonable metrics. In a joint work with Ioannis Gasteratos (TU Berlin), we study the OM functional for the \Phi^4 measure. In dimension 1, the OM functional is what is desired under naive choices of metrics. In dimension 2, the OM functional is what is desired if we choose a metric analogous to the rough paths metric. In dimension 3, naive approaches don't work and the situation is complicated.


October 23, 2025: Alex Dunlap (Duke U.)

October 30, 2025: Ander Aguirre (UW-Madison)

Edgeworth expansion and random polynomials

November 6, 2025: Sudeshna Bhattacharjee (Indian Institute of Science)

November 13, 2025: Jiaoyang Huang (U. Penn)