Probability Seminar: Difference between revisions

From DEV UW-Math Wiki
Jump to navigation Jump to search
Ewbates (talk | contribs)
No edit summary
 
(144 intermediate revisions by 11 users not shown)
Line 1: Line 1:
__NOTOC__
__NOTOC__
[[Probability | Back to Probability Group]]


= Fall 2022 =
* '''When''': Thursdays at 2:30 pm
* '''Where''': 901 Van Vleck Hall
* '''Organizers''': Hongchang Ji, Ander Aguirre, Hai-Xiao Wang
* '''To join the probability seminar mailing list:''' email probsem+subscribe@g-groups.wisc.edu.
* '''To subscribe seminar lunch announcements:''' email lunchwithprobsemspeaker+subscribe@g-groups.wisc.edu


<b>Thursdays at 2:30 PM either in 901 Van Vleck Hall or on Zoom</b>
[[Past Seminars]]
 
We usually end for questions at 3:20 PM.


[https://uwmadison.zoom.us/j/91828707031?pwd=YUJXMUJkMDlPR0VRdkRCQVJtVndIdz09 ZOOM LINK. Valid only for online seminars.]
== Fall 2025 ==


If you would like to sign up for the email list to receive seminar announcements then please join [https://groups.google.com/a/g-groups.wisc.edu/forum/#!forum/probsem our group].
<b>Thursdays at 2:30 PM either in 901 Van Vleck Hall or on Zoom</b>


We usually end for questions at 3:20 PM.


== September 22, 2022, in person: [https://sites.google.com/site/pierreyvesgl/home Pierre Yves Gaudreau Lamarre] (University of Chicago)    ==
== September 4, 2025: No seminar ==
 
'''Moments of the Parabolic Anderson Model with Asymptotically Singular Noise'''
The Parabolic Anderson Model (PAM) is a stochastic partial differential equation that describes the time-evolution of particle system with the following dynamics: Each particle in the system undergoes a diffusion in space, and as they are moving through space, the particles can either multiply or get killed at a rate that depends on a random environment.
One of the fundamental problems in the theory of the PAM is to understand its behavior at large times. More specifically, the solution of the PAM at large times tends to be intermittent, meaning that most of the particles concentrate in small regions where the environment is most favorable for particle multiplication.
In this talk, we discuss a new technique to study intermittency in the PAM with a singular random environment. In short, the technique consists of approximating the singular PAM with a regularized version that becomes increasingly singular as time goes to infinity.
This talk is based on a joint work with Promit Ghosal and Yuchen Liao.
 
== September 29, 2022, in person: Christian Gorski (Northwestern University)    ==
 


== October 6, 2022, in person: [https://danielslonim.github.io/ Daniel Slonim] (University of Virginia)   ==  
== September 11, 2025: David Renfrew (Binghamton U.) ==


'''Random Walks in (Dirichlet) Random Environments with Jumps on Z'''


We introduce the model of random walks in random environments (RWRE), which are random Markov chains on the integer lattice. These random walks are well understood in the nearest-neighbor, one-dimensional case due to reversibility of almost every Markov chain. For example, directional transience and limiting speed can be characterized in terms of simple expectations involving the transition probabilities at a single site. The reversibility is lost, however, if we go up to higher dimensions or relax the nearest-neighbor assumption by allowing jumps, and therefore much less is known in these models. Despite this non-reversibility, certain special cases have proven to be more tractable. Random Walks in Dirichlet environments (RWDE), where the transition probability vectors are drawn according to a Dirichlet distribution, have been fruitfully studied in the nearest-neighbor, higher dimensional setting. We look at RWDE in one dimension with jumps and characterize when the walk is ballistic: that is, when it has non-zero limiting velocity. It turns out that in this model, there are two factors which can cause a directionally transient walk to have zero limiting speed: finite trapping and large-scale backtracking. Finite trapping involves finite subsets of the graph where the walk is liable to get trapped for a long time. It is a highly local phenomenon that depends heavily on the structure of the underlying graph. Large-scale backtracking is a more global and one-dimensional phenomenon. The two operate "independently" in the sense that either can occur with or without the other. Moreover, if neither factor on its own is enough to cause zero speed, then the walk is ballistic, so the two factors cannot conspire together to slow a walk down to zero speed if neither is sufficient to do so on its own. This appearance of two independent factors affecting ballisticity is a new feature not seen in any previously studied RWRE models.
'''Singularities in the spectrum of random block matrices'''


== October 13, 2022, [https://uwmadison.zoom.us/j/91828707031?pwd=YUJXMUJkMDlPR0VRdkRCQVJtVndIdz09 ZOOM]: [https://www.maths.univ-evry.fr/pages_perso/loukianova/ Dasha Loukianova] (Université d'Évry Val d'Essonne)  ==
We consider the density of states of structured Hermitian and non-Hermitian random matrices with a variance profile. As the dimension tends to infinity the associated eigenvalue density can develop a singularity at the origin. The severity of this singularity depends on the relative positions of the zero submatrices. We provide a classification of all possible singularities and determine the exponent in the density blow-up.


== September 18, 2025: JE Paguyo (McMaster U.) ==
'''Asymptotic behavior of the hierarchical Pitman-Yor and Dirichlet processes'''


== October 27, 2022, [https://uwmadison.zoom.us/j/91828707031?pwd=YUJXMUJkMDlPR0VRdkRCQVJtVndIdz09 ZOOM]: [https://www-users.cse.umn.edu/~arnab/ Arnab Sen] (UW-Madison)  ==
The Pitman-Yor process is a discrete random measure specified by a concentration parameter, discount parameter, and base distribution, and is used as a fundamental prior in Bayesian nonparametrics. The hierarchical Pitman-Yor process (HPYP) is a generalization obtained by randomizing the base distribution through a draw from another Pitman-Yor process. It is motivated by the study of groups of clustered data, where the group specific Pitman-Yor processes are linked through an intergroup Pitman-Yor process. Setting both discount parameters to zero recovers the celebrated hierarchical Dirichlet process (HDP), first introduced by Teh et al.
In this talk, we discuss our recent work on the asymptotic behavior of the HPYP and HDP. First, we establish limit theorems associated with the power sum symmetric polynomials for the vector of weights of the HDP as the concentration parameters tend to infinity. These objects are related to the homozygosity in population genetics, the Simpson diversity index in ecology, and the Herfindahl-Hirschman index in economics. Second, we consider a random sample of size $N$ from a population whose type distribution is given by the vector of weights of the HPYP and study the large $N$ asymptotic behavior of the number of clusters in the sample. Our approach relies on a random sample size representation of the number of clusters through the corresponding non-hierarchical process. This talk is based on joint work with Stefano Favaro and Shui Feng.


== September 25, 2025: Chris Janjigian (Purdue U.) ==


== November 3, 2022, in person: [https://www.ias.edu/scholars/sky-yang-cao Sky Cao] (Institute for Advanced Study)   ==  
== October 2, 2025: Elliot Paquette (McGill U.) ==


== October 9, 2025: No seminar (Midwest Probability Colloquium) ==


== November 10, 2022, in person: TBD  ==  
== October 16, 2025: Zachary Selk (Florida State U.) ==


'''<br />On the Onsager-Machlup Function for the \Phi^4 Measure'''


== November 17, 2022, [https://uwmadison.zoom.us/j/91828707031?pwd=YUJXMUJkMDlPR0VRdkRCQVJtVndIdz09 ZOOM]: [https://sites.google.com/site/leandroprpimentel/ Leandro Pimentel] (Federal University of Rio de Janeiro)  ==
The \Phi^4 measure is a measure arising in effective quantum field theory as arguably the simplest example of a nontrivial QFT, modelling the self-interaction of a single scalar quantum field. This measure can be constructed through a procedure known as stochastic quantization. Stochastic quantization seeks to construct a measure on an infinite dimensional space with a given Gibbs-type ``density function" as the invariant measure of a stochastic PDE, in analogy with Langevin dynamics of stochastic ODEs. Both the \Phi^4 measure and its associated stochastic quantization PDE involve nonlinearities of distributions, necessitating renormalization procedures via tools like Wick calculus, regularity structures or paracontrolled calculus. Although the \Phi^4 measure has been constructed in dimensions 1,2 and 3, the question of whether these measures have the desired ``density function" remains open. Although in infinite dimensions, density functions are typically thought to not exist as there is no reference Lebesgue measure, there is a notion of a probability density function that extends to infinite dimensions called the Onsager-Machlup (OM) functional. One pathology of OM theory is that different metrics can lead to different OM functionals, or OM functionals can fail to exist under reasonable metrics. In a joint work with Ioannis Gasteratos (TU Berlin), we study the OM functional for the \Phi^4 measure. In dimension 1, the OM functional is what is desired under naive choices of metrics. In dimension 2, the OM functional is what is desired if we choose a metric analogous to the rough paths metric. In dimension 3, naive approaches don't work and the situation is complicated.




== December 1, in person: [https://cims.nyu.edu/~ajd594/ Alex Dunlap] (Courant Institute)   ==  
==October 23, 2025: Alex Dunlap (Duke U.)==


==October 30, 2025: Ander Aguirre (UW-Madison)==


== December 8, 2022, in person: [https://sites.northwestern.edu/juliagaudio/ Julia Gaudio] (Northwestern University)  ==
'''Edgeworth expansion and random polynomials'''


==November 6, 2025: Sudeshna Bhattacharjee (Indian Institute of Science)==


[[Past Seminars]]
== November 13, 2025: Jiaoyang Huang (U. Penn) ==

Latest revision as of 01:17, 2 September 2025

Back to Probability Group

  • When: Thursdays at 2:30 pm
  • Where: 901 Van Vleck Hall
  • Organizers: Hongchang Ji, Ander Aguirre, Hai-Xiao Wang
  • To join the probability seminar mailing list: email probsem+subscribe@g-groups.wisc.edu.
  • To subscribe seminar lunch announcements: email lunchwithprobsemspeaker+subscribe@g-groups.wisc.edu

Past Seminars

Fall 2025

Thursdays at 2:30 PM either in 901 Van Vleck Hall or on Zoom

We usually end for questions at 3:20 PM.

September 4, 2025: No seminar

September 11, 2025: David Renfrew (Binghamton U.)

Singularities in the spectrum of random block matrices

We consider the density of states of structured Hermitian and non-Hermitian random matrices with a variance profile. As the dimension tends to infinity the associated eigenvalue density can develop a singularity at the origin. The severity of this singularity depends on the relative positions of the zero submatrices. We provide a classification of all possible singularities and determine the exponent in the density blow-up.

September 18, 2025: JE Paguyo (McMaster U.)

Asymptotic behavior of the hierarchical Pitman-Yor and Dirichlet processes

The Pitman-Yor process is a discrete random measure specified by a concentration parameter, discount parameter, and base distribution, and is used as a fundamental prior in Bayesian nonparametrics. The hierarchical Pitman-Yor process (HPYP) is a generalization obtained by randomizing the base distribution through a draw from another Pitman-Yor process. It is motivated by the study of groups of clustered data, where the group specific Pitman-Yor processes are linked through an intergroup Pitman-Yor process. Setting both discount parameters to zero recovers the celebrated hierarchical Dirichlet process (HDP), first introduced by Teh et al. In this talk, we discuss our recent work on the asymptotic behavior of the HPYP and HDP. First, we establish limit theorems associated with the power sum symmetric polynomials for the vector of weights of the HDP as the concentration parameters tend to infinity. These objects are related to the homozygosity in population genetics, the Simpson diversity index in ecology, and the Herfindahl-Hirschman index in economics. Second, we consider a random sample of size $N$ from a population whose type distribution is given by the vector of weights of the HPYP and study the large $N$ asymptotic behavior of the number of clusters in the sample. Our approach relies on a random sample size representation of the number of clusters through the corresponding non-hierarchical process. This talk is based on joint work with Stefano Favaro and Shui Feng.

September 25, 2025: Chris Janjigian (Purdue U.)

October 2, 2025: Elliot Paquette (McGill U.)

October 9, 2025: No seminar (Midwest Probability Colloquium)

October 16, 2025: Zachary Selk (Florida State U.)


On the Onsager-Machlup Function for the \Phi^4 Measure

The \Phi^4 measure is a measure arising in effective quantum field theory as arguably the simplest example of a nontrivial QFT, modelling the self-interaction of a single scalar quantum field. This measure can be constructed through a procedure known as stochastic quantization. Stochastic quantization seeks to construct a measure on an infinite dimensional space with a given Gibbs-type ``density function" as the invariant measure of a stochastic PDE, in analogy with Langevin dynamics of stochastic ODEs. Both the \Phi^4 measure and its associated stochastic quantization PDE involve nonlinearities of distributions, necessitating renormalization procedures via tools like Wick calculus, regularity structures or paracontrolled calculus. Although the \Phi^4 measure has been constructed in dimensions 1,2 and 3, the question of whether these measures have the desired ``density function" remains open. Although in infinite dimensions, density functions are typically thought to not exist as there is no reference Lebesgue measure, there is a notion of a probability density function that extends to infinite dimensions called the Onsager-Machlup (OM) functional. One pathology of OM theory is that different metrics can lead to different OM functionals, or OM functionals can fail to exist under reasonable metrics. In a joint work with Ioannis Gasteratos (TU Berlin), we study the OM functional for the \Phi^4 measure. In dimension 1, the OM functional is what is desired under naive choices of metrics. In dimension 2, the OM functional is what is desired if we choose a metric analogous to the rough paths metric. In dimension 3, naive approaches don't work and the situation is complicated.


October 23, 2025: Alex Dunlap (Duke U.)

October 30, 2025: Ander Aguirre (UW-Madison)

Edgeworth expansion and random polynomials

November 6, 2025: Sudeshna Bhattacharjee (Indian Institute of Science)

November 13, 2025: Jiaoyang Huang (U. Penn)