Probability Seminar: Difference between revisions

From DEV UW-Math Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
 
(141 intermediate revisions by 9 users not shown)
Line 1: Line 1:
__NOTOC__
__NOTOC__
[[Probability | Back to Probability Group]]


= Fall 2021 =
* '''When''': Thursdays at 2:30 pm
* '''Where''': 901 Van Vleck Hall
* '''Organizers''': Hanbaek Lyu, Tatyana Shcherbyna, David Clancy
* '''To join the probability seminar mailing list:''' email probsem+subscribe@g-groups.wisc.edu.
* '''To subscribe seminar lunch announcements:''' email lunchwithprobsemspeaker+subscribe@g-groups.wisc.edu


<b>Thursdays at 2:30 PM either in 901 Van Vleck Hall or on Zoom</b>
[[Past Seminars]]
 
We  usually end for questions at 3:20 PM.
 
[https://uwmadison.zoom.us/j/91828707031?pwd=YUJXMUJkMDlPR0VRdkRCQVJtVndIdz09 ZOOM LINK. Valid only for online seminars.]


If you would like to sign up for the email list to receive seminar announcements then please join [https://groups.google.com/a/g-groups.wisc.edu/forum/#!forum/probsem our group].
== September 16, 2021, in person: [https://hanbaeklyu.com/ Hanbaek Lyu] (UW-Madison)  ==


= Fall 2024 =
<b>Thursdays at 2:30 PM either in 901 Van Vleck Hall or on Zoom</b>


'''Scaling limit of soliton statistics of a multicolor box-ball system'''
We usually end for questions at 3:20 PM.


The box-ball systems (BBS) are integrable cellular automata whose long-time behavior is characterized by the soliton solutions, and have rich connections to other integrable systems such as Korteweg-de Veris equation. Probabilistic analysis of BBS is an emerging topic in the field of integrable probability, which often reveals novel connection between the rich integrable structure of BBS and probabilistic phenomena such as phase transition and invariant measures. In this talk, we give an overview on the recent development in scaling limit theory of multicolor BBS with random initial configurations. Our analysis uses various methods such as modified Greene-Kleitman invariants for BBS, circular exclusion processes, Kerov–Kirillov–Reshetikhin bijection, combinatorial R, and Thermodynamic Bethe Ansatz.
== September 5, 2024: ==
No seminar


== September 23, 2021, no seminar  ==
== September 12, 2024: Hongchang Ji (UW-Madison) ==
'''Spectral edge of non-Hermitian random matrices'''


We report recent progress on spectra of so-called deformed i.i.d. matrices. They are square non-Hermitian random matrices of the form $A+X$ where $X$ has centered i.i.d. entries and $A$ is a deterministic bias, and $A$ and $X$ are on the same scale so that their contributions to the spectrum of $A+X$ are comparable. Under this setting, we present two recent results concerning universal patterns arising in eigenvalue statistics of $A+X$ around its boundary, on macroscopic and microscopic scales. The first result shows that the macroscopic eigenvalue density of $A+X$ typically has a jump discontinuity around the boundary of its support, which is a distinctive feature of $X$ by the \emph{circular law}. The second result is edge universality for deformed non-Hermitian matrices; it shows that the local eigenvalue statistics of $A+X$ around a typical (jump) boundary point is universal, i.e., matches with those of a Ginibre matrix $X$ with i.i.d. standard Gaussian entries.


== September 30, 2021, in person: [https://mrusskikh.mit.edu/home Marianna Russkikh] (MIT)    ==
Based on joint works with A. Campbell, G. Cipolloni, and L. Erd\H{o}s.


'''Lozenge tilings and the Gaussian free field on a cylinder'''


We discuss new results on lozenge tilings on an infinite cylinder, which may be analyzed using the periodic Schur process introduced by Borodin. Under one variant of the $q^{vol}$ measure, corresponding to random cylindric partitions, the height function converges to a deterministic limit shape and fluctuations around it are given by the Gaussian free field in the conformal structure predicted by the Kenyon-Okounkov conjecture. Under another variant, corresponding to an unrestricted tiling model on the cylinder, the fluctuations are given by the same Gaussian free field with an additional discrete Gaussian shift component. Fluctuations of the latter type have been previously conjectured for tiling models on planar domains with holes.
== September 19, 2024: Miklos Racz (Northwestern) ==
'''The largest common subtree of uniform attachment trees'''


== October 7, 2021, [https://uwmadison.zoom.us/j/91828707031?pwd=YUJXMUJkMDlPR0VRdkRCQVJtVndIdz09 ZOOM]: [https://n.ethz.ch/~bdembin/home.html Barbara Dembin] (ETH Zurich)    ==
Consider two independent uniform attachment trees with n nodes each -- how large is their largest common subtree? Our main result gives a lower bound of n^{0.83}. We also give some upper bounds and bounds for general random tree growth models. This is based on joint work with Johannes Bäumler, Bas Lodewijks, James Martin, Emil Powierski, and Anirudh Sridhar.


'''The time constant for Bernoulli percolation is Lipschitz continuous strictly above $p_c$'''
== September 26, 2024: Dmitry Krachun (Princeton) ==
'''A glimpse of universality in critical planar lattice models'''  


We consider the standard model of i.i.d. first passage percolation on $\mathbb Z^d$ given a distribution $G$ on $[0,+\infty]$ ($+\infty$ is allowed). When $G([0,+\infty))>p_c(d)$, it is known that the time constant $\mu_G$ exists. We are interested in the regularity properties of the map $G\mapsto\mu_G$. We study the specific case of distributions of the form $G_p=p\delta_1+(1-p)\delta_\infty$ for $p>p_c(d)$. In this case, the travel time between two points is equal to the length of the shortest path between the two points in a bond percolation of parameter $p$. We prove that the function $p\mapsto \mu_{G_p}$ is Lipschitz continuous on every interval $[p_0,1]$, where $p_0>p_c(d)$.
Abstract: Many models of statistical mechanics are defined on a lattice, yet they describe behaviour of objects in our seemingly isotropic world. It is then natural to ask why, in the small mesh size limit, the directions of the lattice disappear. Physicists' answer to this question is partially given by the Universality hypothesis, which roughly speaking states that critical properties of a physical system do not depend on the lattice or fine properties of short-range interactions but only depend on the spatial dimension and the symmetry of the possible spins. Justifying the reasoning behind the universality hypothesis mathematically seems virtually impossible and so other ideas are needed for a rigorous derivation of universality even in the simplest of setups.  
This is a joint work with Raphaël Cerf.


== October 14, 2021, <span style="color:red">UPDATED FORMAT: </span> [https://uwmadison.zoom.us/j/91828707031?pwd=YUJXMUJkMDlPR0VRdkRCQVJtVndIdz09 ZOOM]: [https://sites.google.com/wisc.edu/evan-sorensen Evan Sorensen] (UW-Madison)  ==
In this talk I will explain some ideas behind the recent result which proves rotational invariance of the FK-percolation model. In doing so, we will see how rotational invariance is related to universality among a certain one-dimensional family of planar lattices and how the latter can be proved using exact integrability of the six-vertex model using Bethe ansatz.


'''Busemann functions and semi-infinite geodesics in a semi-discrete space'''
Based on joint works with Hugo Duminil-Copin, Karol Kozlowski, Ioan Manolescu, Mendes Oulamara, and Tatiana Tikhonovskaia.


In the last 10-15 years, Busemann functions have been a key tool for studying semi-infinite geodesics in planar first and last-passage percolation. We study Busemann functions in the semi-discrete Brownian last-passage percolation (BLPP) model and use these to derive geometric properties of the full collection of semi-infinite geodesics in BLPP. This includes a characterization of  uniqueness and coalescence of semi-infinite geodesics across all asymptotic directions. To deal with the uncountable set of points in BLPP, we develop new methods of proof and uncover new phenomena, compared to discrete models. For example, for each asymptotic direction, there exists a random countable set of initial points out of which there exist two semi-infinite geodesics in that direction. Further, there exists a random set of points, of Hausdorff dimension ½, out of which, for some random direction, there are two semi-infinite geodesics that split from the initial point and never come back together. We derive these results by studying variational problems for Brownian motion with drift.
== October 3, 2024: Joshua Cape (UW-Madison) ==
'''A new random matrix: motivation, properties, and applications'''


== October 21, 2021, [https://uwmadison.zoom.us/j/91828707031?pwd=YUJXMUJkMDlPR0VRdkRCQVJtVndIdz09 ZOOM]: [http://stat.columbia.edu/~sumitm/ Sumit Mukherjee] (Columbia)    ==
In this talk, we introduce and study a new random matrix whose entries are dependent and discrete valued. This random matrix is motivated by problems in multivariate analysis and nonparametric statistics. We establish its asymptotic properties and provide comparisons to existing results for independent entry random matrix models. We then apply our results to two problems: (i) community detection, and (ii) principal submatrix localization. Based on joint work with Jonquil Z. Liao.


'''Fluctuations in Mean Field Ising Models'''
== October 10, 2024: Midwest Probability Colloquium ==
N/A


We study fluctuations of the magnetization (average of spins) in an Ising model on a sequence of "well-connected" approximately $d_n$ regular graphs on $n$ vertices. We show that if $d_n\gg n^{1/2}$,  then the fluctuations are universal, and same as that of the Curie–Weiss model, in the entire ferromagnetic parameter regime. We then give a counterexample to show that $d_n\gg n^{1/2}$ is actually tight, in the sense that the limiting distribution changes if $d_n\sim n^{1/2}$ except in the high temperature regime. By refining our argument, we show that in the high temperature regime universality holds for $d_n\gg n^{1/3}$. As a by-product of our proof technique, we prove rates of convergence, as well as exponential concentration for the sum of spins, and tight estimates for several statistics of interest.
== October 17, 2024: Kihoon Seong (Cornell) ==
'''Gaussian fluctuations of focusing Φ^4 measure around the soliton manifold'''


This is based on joint work with Nabarun Deb at Columbia University.
I will explain the central limit theorem for the focusing Φ^4 measure in the infinite volume limit. The focusing Φ^4 measure, an invariant Gibbs measure for the nonlinear Schrödinger equation, was first studied by Lebowitz, Rose, and Speer (1988), and later extended by Bourgain (1994), Brydges and Slade (1996), and Carlen, Fröhlich, and Lebowitz (2016).  


== October 28, 2021, [https://uwmadison.zoom.us/j/91828707031?pwd=YUJXMUJkMDlPR0VRdkRCQVJtVndIdz09 ZOOM]: [https://www-users.cse.umn.edu/~wkchen/ Wei-Kuo Chen] (Minnesota)    ==
Rider previously showed that this measure is strongly concentrated around a family of minimizers of the associated Hamiltonian, known as the soliton manifold. In this talk, I will discuss the fluctuations around this soliton manifold. Specifically, we show that the scaled field under the focusing Φ^4 measure converges to white noise in the infinite volume limit, thus identifying the next-order fluctuations, as predicted by Rider.


'''Grothendieck $L_p$ problem for Gaussian matrices'''
This talk is based on joint work with Philippe Sosoe (Cornell).


The Grothendieck $L_p$ problem is defined as an optimization problem that maximizes the quadratic form of a Gaussian matrix over the unit $L_p$ ball. The $p=2$ case corresponds to the top eigenvalue of the Gaussian Orthogonal Ensemble, while for $p=\infty$ this problem is known as the ground state energy of the Sherrington-Kirkpatrick mean-field spin glass model and its limit can be expressed by the famous Parisi formula. In this talk, I will describe the limit of this optimization problem for general $p$ and discuss some results on the behavior of the near optimizers along with some open problems. This is based on a joint work with Arnab Sen.
== October 24, 2024: Jacob Richey (Alfred Renyi Institute) ==
'''Stochastic abelian particle systems and self-organized criticality'''


== November 4, 2021, [https://uwmadison.zoom.us/j/91828707031?pwd=YUJXMUJkMDlPR0VRdkRCQVJtVndIdz09 ZOOM]: [https://mathematics.stanford.edu/people/mackenzie-simper Mackenzie Simper] (Stanford) ==
Abstract: Activated random walk (ARW) is an 'abelian' particle system that conjecturally exhibits complex behaviors which were first described by physicists in the 1990s, namely self organized criticality and hyperuniformity. I will discuss recent results for ARW and the stochastic sandpile (a related model) on Z and other graphs, plus many open questions.


'''Double Cosets, Mallows Measure, and a Transvections Markov Chain'''
== October 31, 2024: David Clancy (UW-Madison) ==
'''Likelihood landscape on a known phylogeny'''


If $G = GL_n(\mathbb{F}_q)$ and $B$ is the subgroup of lower triangular matrices, then the $B\backslash G/B$ double cosets are indexed by permutations $S_n$. This is the famous Bruhat decomposition, closely related to the LU decomposition of a matrix. The Markov chain on $G$ generated by random transvections – matrices which fix a hyperplane – induces a Markov chain on $S_n$ with the Mallows measure as stationary distribution. We characterize this process, study the mixing time, and discuss the connection with the number of pivoting steps needed in Gaussian elimination. This is joint work with Persi Diaconis and Arun Ram.
Abstract: Over time, ancestral populations evolve to become separate species. We can represent this history as a tree with edge lengths where the leaves are the modern-day species. If we know the precise topology of the tree (i.e. the precise evolutionary relationship between all the species), then we can imagine traits (their presence or absence) being passed down according to a symmetric 2-state continuous-time Markov chain. The branch length becomes the probability a parent species has a trait while the child species does not. This length is unknown, but researchers have observed they can get pretty good estimates using maximum likelihood estimation and only the leaf data despite the fact that the number of critical points for the log-likelihood grows exponentially fast in the size of the tree. In this talk, I will discuss why this MLE approach works by showing that the population log-likelihood is strictly concave and smooth in a neighborhood around the true branch length parameters and the size.


== November 11, 2021, in person: [http://web.lfzhang.com/ Lingfu Zhang] (Princeton)    ==
This talk is based on joint work with Hanbaek Lyu, Sebastien Roch and Allan Sly.


'''Shift-invariance of the colored TASEP and random sorting networks'''
== November 7, 2024: Zoe Huang (UNC Chapel Hill) ==
'''Cutoff for Cayley graphs of nilpotent groups'''


In this talk, I will introduce a new shift-invariance property of the colored TASEP. It is in a similar spirit as recent results for the six-vertex models (by Borodin-Gorin-Wheeler and Galashin), but its proof is via non-algebraic arguments. This new shift-invariance is applied to prove a conjectured distributional equality between the classical exponential Last Passage Percolation model and the oriented swap process (OSP). The OSP is a model for a random sorting network, with N particles labeled $1,\dots,N$ performing successive adjacent swaps at random times until they reach the reverse configuration $N,\dots,1$. Our distributional equality implies new asymptotic results about the OSP, some of which are in connection with the Airy sheet.
Abstract: Abstract:  We consider the random Cayley graphs of a sequence of finite nilpotent groups of diverging sizes $G=G(n)$, whose ranks and nilpotency classes are uniformly bounded. For some $k=k(n)$ such that $1\ll\log k \ll \log |G|$, we pick a random set of generators $S=S(n)$ by sampling $k$ elements $Z_1,\ldots,Z_k$ from $G$ uniformly at random with replacement, and set $S:=\{Z_j^{\pm 1}:1 \le j\le k \}$. We show that the simple random walk on Cay$(G,S)$ exhibits cutoff with high probability. Some of our results apply to a general set of generators. Namely, we show that there is a constant $c>0$, depending only on the rank and the nilpotency class of $G$, such that for all symmetric sets of generators $S$ of size at most $ \frac{c\log |G|}{\log \log |G|}$, the spectral gap and the $\varepsilon$-mixing time of the simple random walk $X=(X_t)_{t\geq 0}$ on Cay$(G,S)$ are asymptotically the same as those of the projection of $X$ to the abelianization of $G$, given by $[G,G]X_t$. In particular, $X$ exhibits cutoff if and only if its projection does. Based on joint work with Jonathan Hermon.


== November 18, 2021, in person [http://www.ilt.kharkov.ua/bvi/structure/depart_e/d24/mariya_shcherbina-cv.htm Mariya Shcherbina]: (Kharkov) ==
== November 14, 2024: Nabarun Deb (University of Chicago) ==
Mean-Field fluctuations in Ising models and posterior prediction intervals in low signal-to-noise ratio regimes


== November 25, 2021, no seminar  ==
Ising models have become central in probability, statistics, and machine learning. They naturally appear in the posterior distribution of regression coefficients under the linear model $Y = X\beta + \epsilon$, where $\epsilon \sim N(0, \sigma^2 I_n)$. This talk explores fluctuations of specific linear statistics under the Ising model, with a focus on applications in Bayesian linear regression.


In the first part, we examine Ising models on "dense regular" graphs and characterize the limiting distribution of average magnetization across various temperature and magnetization regimes, extending previous results beyond the Curie-Weiss (complete graph) case. In the second part, we analyze posterior prediction intervals for linear statistics in low signal-to-noise ratio (SNR) scenarios, also known as the contiguity regime. Here, unlike standard Bernstein-von Mises results, the limiting distributions are highly sensitive to the choice of prior. We illustrate this dependency by presenting limiting laws under both correctly specified and misspecified priors.


== December 2, 2021, in person: [http://math.uchicago.edu/~xuanw/ Xuan Wu] (Chicago)  ==
This talk is based on joint work with Sumit Mukherjee and Seunghyun Li.


== November 21, 2024: Reza Gheissari (Northwestern) ==
'''Wetting and pre-wetting in (2+1)D solid-on-solid interfaces'''


== December 9, 2021, [https://uwmadison.zoom.us/j/91828707031?pwd=YUJXMUJkMDlPR0VRdkRCQVJtVndIdz09 ZOOM]: [https://www.maths.dur.ac.uk/users/sunil.chhita/ Sunil Chhita] (Durham)  ==
The (d+1)D-solid-on-solid model is a simple model of integer-valued height functions that approximates the low-temperature interface of an Ising model. When $d\ge 2$, with zero-boundary conditions, at low temperatures the surface is localized about height $0$, but when constrained to take only non-negative values entropic repulsion pushes it to take typical heights of $O(\log n)$.  I will describe the mechanism of entropic repulsion, and present results on how the picture changes when one introduces a competing force trying to keep the interface localized (either an external field or a reward for points where the height is exactly zero). Along the way, I will outline rich predictions for the shapes of level curves, and for metastability phenomena in the Glauber dynamics. Based on joint work with Eyal Lubetzky and Joseph Chen.


'''GOE Fluctuations for the maximum of the top path in ASMs'''
== November 28, 2024: Thanksgiving ==
No seminar


The six-vertex model is an important toy-model in statistical mechanics for two-dimensional ice with a natural parameter Δ. When Δ=0, the so-called free-fermion point, the model is in natural correspondence with domino tilings of the Aztec diamond. Although this model is integrable for all Δ, there has been very little progress in understanding its statistics in the scaling limit for other values. In this talk, we focus on the six-vertex model with domain wall boundary conditions at Δ=1/2, where it corresponds to alternating sign matrices (ASMs). We consider the level lines in a height function representation of ASMs. We report that the maximum of the topmost level line for a uniformly random ASMs has the GOE Tracy-Widom distribution after appropriate rescaling.  This talk is based on joint work with Arvind Ayyer and Kurt Johansson.
== December 5, 2024: Erik Bates (NC State) ==


'''Parisi formulas in multi-species and vector spin glass models'''


[[Past Seminars]]
The expression "Parisi formula" refers to a variational formula postulated by Parisi in 1980 to give the limiting free energy of the Sherrington--Kirkpatrick (SK) spin glass.  The SK model was originally conceived as a mean-field description for disordered magnetism, and has since become a mathematical prototype for frustrated disordered systems and high-complexity functions.  In recent years, there has been an effort to extend the Parisi framework to various generalizations of the SK model, raising new physical questions met with fresh mathematical challenges.  In this talk, I will share some developments in this evolving story.  Based on joint works with Leila Sloman and Youngtak Sohn.

Latest revision as of 20:39, 22 November 2024

Back to Probability Group

  • When: Thursdays at 2:30 pm
  • Where: 901 Van Vleck Hall
  • Organizers: Hanbaek Lyu, Tatyana Shcherbyna, David Clancy
  • To join the probability seminar mailing list: email probsem+subscribe@g-groups.wisc.edu.
  • To subscribe seminar lunch announcements: email lunchwithprobsemspeaker+subscribe@g-groups.wisc.edu

Past Seminars


Fall 2024

Thursdays at 2:30 PM either in 901 Van Vleck Hall or on Zoom

We usually end for questions at 3:20 PM.

September 5, 2024:

No seminar

September 12, 2024: Hongchang Ji (UW-Madison)

Spectral edge of non-Hermitian random matrices

We report recent progress on spectra of so-called deformed i.i.d. matrices. They are square non-Hermitian random matrices of the form $A+X$ where $X$ has centered i.i.d. entries and $A$ is a deterministic bias, and $A$ and $X$ are on the same scale so that their contributions to the spectrum of $A+X$ are comparable. Under this setting, we present two recent results concerning universal patterns arising in eigenvalue statistics of $A+X$ around its boundary, on macroscopic and microscopic scales. The first result shows that the macroscopic eigenvalue density of $A+X$ typically has a jump discontinuity around the boundary of its support, which is a distinctive feature of $X$ by the \emph{circular law}. The second result is edge universality for deformed non-Hermitian matrices; it shows that the local eigenvalue statistics of $A+X$ around a typical (jump) boundary point is universal, i.e., matches with those of a Ginibre matrix $X$ with i.i.d. standard Gaussian entries.

Based on joint works with A. Campbell, G. Cipolloni, and L. Erd\H{o}s.


September 19, 2024: Miklos Racz (Northwestern)

The largest common subtree of uniform attachment trees

Consider two independent uniform attachment trees with n nodes each -- how large is their largest common subtree? Our main result gives a lower bound of n^{0.83}. We also give some upper bounds and bounds for general random tree growth models. This is based on joint work with Johannes Bäumler, Bas Lodewijks, James Martin, Emil Powierski, and Anirudh Sridhar.

September 26, 2024: Dmitry Krachun (Princeton)

A glimpse of universality in critical planar lattice models

Abstract: Many models of statistical mechanics are defined on a lattice, yet they describe behaviour of objects in our seemingly isotropic world. It is then natural to ask why, in the small mesh size limit, the directions of the lattice disappear. Physicists' answer to this question is partially given by the Universality hypothesis, which roughly speaking states that critical properties of a physical system do not depend on the lattice or fine properties of short-range interactions but only depend on the spatial dimension and the symmetry of the possible spins. Justifying the reasoning behind the universality hypothesis mathematically seems virtually impossible and so other ideas are needed for a rigorous derivation of universality even in the simplest of setups.

In this talk I will explain some ideas behind the recent result which proves rotational invariance of the FK-percolation model. In doing so, we will see how rotational invariance is related to universality among a certain one-dimensional family of planar lattices and how the latter can be proved using exact integrability of the six-vertex model using Bethe ansatz.

Based on joint works with Hugo Duminil-Copin, Karol Kozlowski, Ioan Manolescu, Mendes Oulamara, and Tatiana Tikhonovskaia.

October 3, 2024: Joshua Cape (UW-Madison)

A new random matrix: motivation, properties, and applications

In this talk, we introduce and study a new random matrix whose entries are dependent and discrete valued. This random matrix is motivated by problems in multivariate analysis and nonparametric statistics. We establish its asymptotic properties and provide comparisons to existing results for independent entry random matrix models. We then apply our results to two problems: (i) community detection, and (ii) principal submatrix localization. Based on joint work with Jonquil Z. Liao.

October 10, 2024: Midwest Probability Colloquium

N/A

October 17, 2024: Kihoon Seong (Cornell)

Gaussian fluctuations of focusing Φ^4 measure around the soliton manifold

I will explain the central limit theorem for the focusing Φ^4 measure in the infinite volume limit. The focusing Φ^4 measure, an invariant Gibbs measure for the nonlinear Schrödinger equation, was first studied by Lebowitz, Rose, and Speer (1988), and later extended by Bourgain (1994), Brydges and Slade (1996), and Carlen, Fröhlich, and Lebowitz (2016).

Rider previously showed that this measure is strongly concentrated around a family of minimizers of the associated Hamiltonian, known as the soliton manifold. In this talk, I will discuss the fluctuations around this soliton manifold. Specifically, we show that the scaled field under the focusing Φ^4 measure converges to white noise in the infinite volume limit, thus identifying the next-order fluctuations, as predicted by Rider.

This talk is based on joint work with Philippe Sosoe (Cornell).

October 24, 2024: Jacob Richey (Alfred Renyi Institute)

Stochastic abelian particle systems and self-organized criticality

Abstract: Activated random walk (ARW) is an 'abelian' particle system that conjecturally exhibits complex behaviors which were first described by physicists in the 1990s, namely self organized criticality and hyperuniformity. I will discuss recent results for ARW and the stochastic sandpile (a related model) on Z and other graphs, plus many open questions.

October 31, 2024: David Clancy (UW-Madison)

Likelihood landscape on a known phylogeny

Abstract: Over time, ancestral populations evolve to become separate species. We can represent this history as a tree with edge lengths where the leaves are the modern-day species. If we know the precise topology of the tree (i.e. the precise evolutionary relationship between all the species), then we can imagine traits (their presence or absence) being passed down according to a symmetric 2-state continuous-time Markov chain. The branch length becomes the probability a parent species has a trait while the child species does not. This length is unknown, but researchers have observed they can get pretty good estimates using maximum likelihood estimation and only the leaf data despite the fact that the number of critical points for the log-likelihood grows exponentially fast in the size of the tree. In this talk, I will discuss why this MLE approach works by showing that the population log-likelihood is strictly concave and smooth in a neighborhood around the true branch length parameters and the size.

This talk is based on joint work with Hanbaek Lyu, Sebastien Roch and Allan Sly.

November 7, 2024: Zoe Huang (UNC Chapel Hill)

Cutoff for Cayley graphs of nilpotent groups

Abstract: Abstract:  We consider the random Cayley graphs of a sequence of finite nilpotent groups of diverging sizes $G=G(n)$, whose ranks and nilpotency classes are uniformly bounded. For some $k=k(n)$ such that $1\ll\log k \ll \log |G|$, we pick a random set of generators $S=S(n)$ by sampling $k$ elements $Z_1,\ldots,Z_k$ from $G$ uniformly at random with replacement, and set $S:=\{Z_j^{\pm 1}:1 \le j\le k \}$. We show that the simple random walk on Cay$(G,S)$ exhibits cutoff with high probability. Some of our results apply to a general set of generators. Namely, we show that there is a constant $c>0$, depending only on the rank and the nilpotency class of $G$, such that for all symmetric sets of generators $S$ of size at most $ \frac{c\log |G|}{\log \log |G|}$, the spectral gap and the $\varepsilon$-mixing time of the simple random walk $X=(X_t)_{t\geq 0}$ on Cay$(G,S)$ are asymptotically the same as those of the projection of $X$ to the abelianization of $G$, given by $[G,G]X_t$. In particular, $X$ exhibits cutoff if and only if its projection does. Based on joint work with Jonathan Hermon.

November 14, 2024: Nabarun Deb (University of Chicago)

Mean-Field fluctuations in Ising models and posterior prediction intervals in low signal-to-noise ratio regimes

Ising models have become central in probability, statistics, and machine learning. They naturally appear in the posterior distribution of regression coefficients under the linear model $Y = X\beta + \epsilon$, where $\epsilon \sim N(0, \sigma^2 I_n)$. This talk explores fluctuations of specific linear statistics under the Ising model, with a focus on applications in Bayesian linear regression.

In the first part, we examine Ising models on "dense regular" graphs and characterize the limiting distribution of average magnetization across various temperature and magnetization regimes, extending previous results beyond the Curie-Weiss (complete graph) case. In the second part, we analyze posterior prediction intervals for linear statistics in low signal-to-noise ratio (SNR) scenarios, also known as the contiguity regime. Here, unlike standard Bernstein-von Mises results, the limiting distributions are highly sensitive to the choice of prior. We illustrate this dependency by presenting limiting laws under both correctly specified and misspecified priors.

This talk is based on joint work with Sumit Mukherjee and Seunghyun Li.

November 21, 2024: Reza Gheissari (Northwestern)

Wetting and pre-wetting in (2+1)D solid-on-solid interfaces

The (d+1)D-solid-on-solid model is a simple model of integer-valued height functions that approximates the low-temperature interface of an Ising model. When $d\ge 2$, with zero-boundary conditions, at low temperatures the surface is localized about height $0$, but when constrained to take only non-negative values entropic repulsion pushes it to take typical heights of $O(\log n)$.  I will describe the mechanism of entropic repulsion, and present results on how the picture changes when one introduces a competing force trying to keep the interface localized (either an external field or a reward for points where the height is exactly zero). Along the way, I will outline rich predictions for the shapes of level curves, and for metastability phenomena in the Glauber dynamics. Based on joint work with Eyal Lubetzky and Joseph Chen.

November 28, 2024: Thanksgiving

No seminar

December 5, 2024: Erik Bates (NC State)

Parisi formulas in multi-species and vector spin glass models

The expression "Parisi formula" refers to a variational formula postulated by Parisi in 1980 to give the limiting free energy of the Sherrington--Kirkpatrick (SK) spin glass.  The SK model was originally conceived as a mean-field description for disordered magnetism, and has since become a mathematical prototype for frustrated disordered systems and high-complexity functions.  In recent years, there has been an effort to extend the Parisi framework to various generalizations of the SK model, raising new physical questions met with fresh mathematical challenges.  In this talk, I will share some developments in this evolving story.  Based on joint works with Leila Sloman and Youngtak Sohn.