AMS Student Chapter Seminar: Difference between revisions

From DEV UW-Math Wiki
Jump to navigation Jump to search
No edit summary
 
(80 intermediate revisions by 13 users not shown)
Line 1: Line 1:
The AMS Student Chapter Seminar is an informal, graduate student seminar on a wide range of mathematical topics. Pastries (usually donuts) will be provided.
The AMS Student Chapter Seminar (aka Donut Seminar) is an informal, graduate student seminar on a wide range of mathematical topics. The goal of the seminar is to promote community building and give graduate students an opportunity to communicate fun, accessible math to their peers in a stress-free (but not sugar-free) environment. Pastries (usually donuts) will be provided.


* '''When:''' Wednesdays, 3:20 PM – 3:50 PM
* '''When:''' Thursdays 4:00-4:30pm
* '''Where:''' Van Vleck, 9th floor lounge (unless otherwise announced)
* '''Where:''' Van Vleck, 9th floor lounge (unless otherwise announced)
* '''Organizers:''' [https://www.math.wisc.edu/~malexis/ Michel Alexis], [https://www.math.wisc.edu/~drwagner/ David Wagner], [http://www.math.wisc.edu/~nicodemus/ Patrick Nicodemus], [http://www.math.wisc.edu/~thaison/ Son Tu], Carrie Chen
* '''Organizers:''' Ivan Aidun, Kaiyi Huang, Ethan Schondorf


Everyone is welcome to give a talk. To sign up, please contact one of the organizers with a title and abstract. Talks are 30 minutes long and should avoid assuming significant mathematical background beyond first-year graduate courses.
Everyone is welcome to give a talk. To sign up, please contact one of the organizers with a title and abstract. Talks are 25 minutes long and should avoid assuming significant mathematical background beyond first-year graduate courses.


The schedule of talks from past semesters can be found [[AMS Student Chapter Seminar, previous semesters|here]].
The schedule of talks from past semesters can be found [[AMS Student Chapter Seminar, previous semesters|here]].


== Spring 2020 ==
== Fall 2024 ==
<center>
{| cellspacing="5" cellpadding="14" border="0" style="color:black; font-size:120%"
! align="center" width="200" bgcolor="#D0D0D0" |'''Date'''
! align="center" width="200" bgcolor="#A6B658" |'''Speaker'''
! align="center" width="300" bgcolor="#BCD2EE" |'''Title'''
! align="center" width="400" bgcolor="#BCD2EE" |'''Abstract'''
|-
| bgcolor="#D0D0D0" |September 12
| bgcolor="#A6B658" |Ari Davidovsky
| bgcolor="#BCD2EE" |95% of people can't solve this!
| bgcolor="#BCD2EE" | [[File:Image.png|360px]]


=== February 5, TBD===
We will attempt to answer this question and along the way explore how algebra and geometry work together to solve problems in number theory.
|-
| bgcolor="#D0D0D0" |September 19
| bgcolor="#A6B658" |CANCELLED
| bgcolor="#BCD2EE" |NONE
| bgcolor="#BCD2EE" |NONE
|-
| bgcolor="#D0D0D0" |September 26
| bgcolor="#A6B658" |Mateo Morales
| bgcolor="#BCD2EE" |Officially petitioning the department to acquire a ping pong table.
| bgcolor="#BCD2EE" |Ever want to prove something is a free group of rank 2? Me too. One way to do this is to use a ping pong argument of how a group generated by two elements acts on a set.
I will illustrate the ping pong argument using an example of matrices, explain how it works, and explain why, kinda.


Title: TBD
Very approachable if you know what a group is but does require tons of ping pong experience.
Abstract: TBD
|-
 
| bgcolor="#D0D0D0" |October 3
=== February 12, TBD===
| bgcolor="#A6B658" |Karthik Ravishankar
 
| bgcolor="#BCD2EE" |Incompleteness for the working mathematician
Title: TBD
| bgcolor="#BCD2EE" |In this talk we'll take a look at Gödels famous incompleteness theorems and look at some of its immediate as well as interesting consequences. No background in logic is necessary!
Abstract: TBD
|-
 
| bgcolor="#D0D0D0" |October 10
=== February 19, TBD===
| bgcolor="#A6B658" |Elizabeth Hankins
 
| bgcolor="#BCD2EE" |Mathematical Origami and Flat-Foldability
Title: TBD
| bgcolor="#BCD2EE" |If you've ever unfolded a piece of origami, you might have noticed complicated symmetries in the pattern of creases left behind. What patterns of lines can and cannot be folded into origami? And why is it sometimes hard to determine?
Abstract: TBD
|-
 
| bgcolor="#D0D0D0" |October 17
=== February 26, TBD===
| bgcolor="#A6B658" |CANCELLED
 
| bgcolor="#BCD2EE" |NONE
Title: TBD
| bgcolor="#BCD2EE" |NONE
Abstract: TBD
|-
 
| bgcolor="#D0D0D0" |October 24
=== March 4, TBD===
| bgcolor="#A6B658" |CANCELLED
 
| bgcolor="#BCD2EE" |NONE
Title: TBD
| bgcolor="#BCD2EE" |NONE
Abstract: TBD
|-
 
| bgcolor="#D0D0D0" |October 31
== Fall 2019 ==
| bgcolor="#A6B658" |Jacob Wood
 
| bgcolor="#BCD2EE" |What is the length of a <s>potato</s> pumpkin?
=== October 9, Brandon Boggess===
| bgcolor="#BCD2EE" |How many is a jack-o-lantern? What is the length of a pumpkin? These questions sound like nonsense, but they have perfectly reasonable interpretations with perfectly reasonable answers. On our journey through the haunted house with two rooms, we will encounter some scary characters like differential topology and measure theory. Do not fear; little to no experience in either subject is required.
 
|-
Title: An Application of Elliptic Curves to the Theory of Internet Memes
| bgcolor="#D0D0D0" |November 7
 
| bgcolor="#A6B658" |CANCELLED: DISTINGUISHED LECTURE
Abstract: Solve polynomial equations with this one weird trick! Math teachers hate him!!!
| bgcolor="#BCD2EE" |NONE
 
| bgcolor="#BCD2EE" |NONE
[[File:Thumbnail fruit meme.png]]
|-
 
| bgcolor="#D0D0D0" |November 14
=== October 16, Jiaxin Jin===
| bgcolor="#A6B658" |Sapir Ben-Shahar
 
| bgcolor="#BCD2EE" |Hexaflexagons
Title: Persistence and global stability for biochemical reaction-diffusion systems
| bgcolor="#BCD2EE" |Come along for some hexaflexafun and discover the mysterious properties of hexaflexagons, the bestagons! Learn how to make and navigate through the folds of your very own paper hexaflexagon. No prior knowledge of hexagons (or hexaflexagons) is assumed.
 
|-
Abstract: The investigation of the dynamics of solutions of nonlinear reaction-diffusion PDE systems generated by biochemical networks is a great challenge; in general, even the existence of classical solutions is difficult to establish. On the other hand, these kinds of problems appear very often in biological applications, e.g., when trying to understand the role of spatial inhomogeneities in living cells. We discuss the persistence and global stability properties of special classes of such systems, under additional assumptions such as: low number of species, complex balance or weak reversibility.
| bgcolor="#D0D0D0" |November 21
 
| bgcolor="#A6B658" |Andrew Krenz
=== October 23, Erika Pirnes===
| bgcolor="#BCD2EE" |All concepts are database queries
 
| bgcolor="#BCD2EE" |A celebrated result of applied category theory states that the category of small categories is equivalent to the category of database schemas. Therefore, every theorem about small categories can be interpreted as a theorem about databases.  Maybe you've heard someone repeat Mac Lane's famous slogan "all concepts are Kan extensions."  In this talk, I'll give a high-level overview of/introduction to categorical database theory (developed by David Spivak) wherein Kan extensions play the role of regular every day database queries.  No familiarity with categories or databases will be assumed.
(special edition: carrot seminar)
|-
 
| bgcolor="#D0D0D0" |November 28
Title: Why do ice hockey players fall in love with mathematicians? (Behavior of certain number string sequences)
| bgcolor="#A6B658" |THANKSGIVING
 
| bgcolor="#BCD2EE" |NONE
Abstract: Starting with some string of digits 0-9, add the adjacent numbers pairwise to obtain a new string. Whenever the sum is 10 or greater, separate its digits. For example, 26621 would become 81283 and then 931011. Repeating this process with different inputs gives varying behavior. In some cases the process terminates (becomes a single digit), or ends up in a loop, like 999, 1818, 999... The length of the strings can also start growing very fast. I'll discuss some data and conjectures about classifying the behavior.
| bgcolor="#BCD2EE" |NONE
 
|-
=== October 30, Yunbai Cao===
| bgcolor="#D0D0D0" |December 5
 
| bgcolor="#A6B658" |Caroline Nunn
Title: Kinetic theory in bounded domains
| bgcolor="#BCD2EE" |Watch Caroline eat a donut: an introduction to Morse theory
 
| bgcolor="#BCD2EE" |Morse theory has been described as "one of the deepest applications of differential geometry to topology." However, the concepts involved in Morse theory are so simple that you can learn them just by watching me eat a donut (and subsequently watching me give a 20 minute talk explaining Morse theory.) No background is needed beyond calc 3 and a passing familiarity with donuts.
Abstract: In 1900, David Hilbert outlined 23 important problems in the International Congress of Mathematics. One of them is the Hilbert's sixth problem which asks the mathematical linkage between the mechanics from microscopic view and the macroscopic view. A relative new mesoscopic point of view at that time which is "kinetic theory" was highlighted by Hilbert as the bridge to link the two. In this talk, I will talk about the history and basic elements of kinetic theory and Boltzmann equation, and the role boundary plays for such a system, as well as briefly mention some recent progress.
|}
 
</center>
=== November 6, Tung Nguyen===
 
Title: Introduction to Chemical Reaction Network
 
Abstract: Reaction network models are often used to investigate the dynamics of different species from various branches of chemistry, biology and ecology. The study of reaction network has grown significantly and involves a wide range of mathematics and applications. In this talk, I aim to show a big picture of what is happening in reaction network theory. I will first introduce the basic dynamical models for reaction network: the deterministic and stochastic models. Then, I will mention some big questions of interest, and the mathematical tools that are used by people in the field. Finally, I will make connection between reaction network and other branches of mathematics such as PDE, control theory, and random graph theory.
 
=== November 13, Stephen Davis===
 
Title: Brownian Minions
 
Abstract: Having lots of small minions help you perform a task is often very effective. For example, if you need to grade a large stack of calculus problems, it is effective to have several TAs grade parts of the pile for you. We'll talk about how we can use random motions as minions to help us perform mathematical tasks. Typically, this mathematical task would be optimization, but we'll reframe a little bit and focus on art and beauty instead. We'll also try to talk about the so-called "storytelling metric," which is relevant here. There will be pictures and animations! 🎉
 
Sneak preview: some modern art generated with MATLAB.
 
[[File:Picpic.jpg]]
 
=== November 20, Colin Crowley===
 
Title: Matroid Bingo
 
Abstract: Matroids are combinatorial objects that generalize graphs and matrices. The famous combinatorialist Gian Carlo Rota once said that "anyone who has worked with matroids has come away with the conviction that matroids are one of the richest and most useful ideas of our day." Although his day was in the 60s and 70s, matroids remain an active area of current research with connections to areas such as algebraic geometry, tropical geometry, and parts of computer science. Since this is a doughnut talk, I will introduce matroids in a cute way that involves playing bingo, and then I'll show you some cool examples.
 
=== December 4, Xiaocheng Li===
 
Title: The method of stationary phase and Duistermaat-Heckman formula
 
Abstract: The oscillatory integral $\int_X e^{itf(x)}\mu=:I(t), t\in \mathbb{R}$ is a fundamental object in analysis. In general, $I(t)$ seldom has an explicit expression as Fourier transform is usually inexplicit. In practice, we are interested in the asymptotic behavior of $I(t)$, that is, for $|t|$ very large. A classical tool of getting an approximation is the method of stationary phase which gives the leading term of $I(t)$. Furthermore, there are rare instances for which the approximation coincides with the exact value of $I(t)$. One example is the Duistermaat-Heckman formula in which the Hamiltonian action and the momentum map are addressed. In the talk, I will start with basic facts in Fourier analysis, then discuss the method of stationary phase and the Duistermaat-Heckman formula.
 
=== December 11, Chaojie Yuan===
 
Title: TBD
 
Abstract: TBD

Latest revision as of 19:14, 2 December 2024

The AMS Student Chapter Seminar (aka Donut Seminar) is an informal, graduate student seminar on a wide range of mathematical topics. The goal of the seminar is to promote community building and give graduate students an opportunity to communicate fun, accessible math to their peers in a stress-free (but not sugar-free) environment. Pastries (usually donuts) will be provided.

  • When: Thursdays 4:00-4:30pm
  • Where: Van Vleck, 9th floor lounge (unless otherwise announced)
  • Organizers: Ivan Aidun, Kaiyi Huang, Ethan Schondorf

Everyone is welcome to give a talk. To sign up, please contact one of the organizers with a title and abstract. Talks are 25 minutes long and should avoid assuming significant mathematical background beyond first-year graduate courses.

The schedule of talks from past semesters can be found here.

Fall 2024

Date Speaker Title Abstract
September 12 Ari Davidovsky 95% of people can't solve this! Image.png

We will attempt to answer this question and along the way explore how algebra and geometry work together to solve problems in number theory.

September 19 CANCELLED NONE NONE
September 26 Mateo Morales Officially petitioning the department to acquire a ping pong table. Ever want to prove something is a free group of rank 2? Me too. One way to do this is to use a ping pong argument of how a group generated by two elements acts on a set.

I will illustrate the ping pong argument using an example of matrices, explain how it works, and explain why, kinda.

Very approachable if you know what a group is but does require tons of ping pong experience.

October 3 Karthik Ravishankar Incompleteness for the working mathematician In this talk we'll take a look at Gödels famous incompleteness theorems and look at some of its immediate as well as interesting consequences. No background in logic is necessary!
October 10 Elizabeth Hankins Mathematical Origami and Flat-Foldability If you've ever unfolded a piece of origami, you might have noticed complicated symmetries in the pattern of creases left behind. What patterns of lines can and cannot be folded into origami? And why is it sometimes hard to determine?
October 17 CANCELLED NONE NONE
October 24 CANCELLED NONE NONE
October 31 Jacob Wood What is the length of a potato pumpkin? How many is a jack-o-lantern? What is the length of a pumpkin? These questions sound like nonsense, but they have perfectly reasonable interpretations with perfectly reasonable answers. On our journey through the haunted house with two rooms, we will encounter some scary characters like differential topology and measure theory. Do not fear; little to no experience in either subject is required.
November 7 CANCELLED: DISTINGUISHED LECTURE NONE NONE
November 14 Sapir Ben-Shahar Hexaflexagons Come along for some hexaflexafun and discover the mysterious properties of hexaflexagons, the bestagons! Learn how to make and navigate through the folds of your very own paper hexaflexagon. No prior knowledge of hexagons (or hexaflexagons) is assumed.
November 21 Andrew Krenz All concepts are database queries A celebrated result of applied category theory states that the category of small categories is equivalent to the category of database schemas. Therefore, every theorem about small categories can be interpreted as a theorem about databases.  Maybe you've heard someone repeat Mac Lane's famous slogan "all concepts are Kan extensions."  In this talk, I'll give a high-level overview of/introduction to categorical database theory (developed by David Spivak) wherein Kan extensions play the role of regular every day database queries.  No familiarity with categories or databases will be assumed.
November 28 THANKSGIVING NONE NONE
December 5 Caroline Nunn Watch Caroline eat a donut: an introduction to Morse theory Morse theory has been described as "one of the deepest applications of differential geometry to topology." However, the concepts involved in Morse theory are so simple that you can learn them just by watching me eat a donut (and subsequently watching me give a 20 minute talk explaining Morse theory.) No background is needed beyond calc 3 and a passing familiarity with donuts.