Graduate Student Singularity Theory: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 24: | Line 24: | ||
|- | |- | ||
|Feb.27 (Wed) | |Feb.27 (Wed) | ||
| | |KaiHo Wong | ||
|'' | |''Fundamental groups of plane curves complements'' | ||
|- | |- | ||
|Mar.13 (Wed) | |Mar.13 (Wed) |
Revision as of 03:03, 19 February 2013
It is a weekly seminar by graduate students. Anyone is welcome. If you would like to present a topic, please contact Tommy Wong. Most of the seminars are at Wednesdays 3:00pm in room 901. Please check below for unusual time and location.
Spring 2013
date | speaker | title |
---|---|---|
Feb. 6 (Wed) | Jeff Poskin | Toric Varieties III |
Feb.13 (Wed) | Yongqiang Liu | Intersection Alexander Module |
Feb.20 (Wed) | Yun Su (Suky) | How do singularities change shape and view of objects? |
Feb.27 (Wed) | KaiHo Wong | Fundamental groups of plane curves complements |
Mar.13 (Wed) | ? | ? |
Mar.20 (Wed) | ? | ? |
Apr. 3 (Wed) | ? | ? |
Apr.10 (Wed) | ? | ? |
Fall 2012
date | speaker | title |
---|---|---|
Sept. 18 (Tue) | KaiHo Wong | Organization and Milnor fibration and Milnor Fiber |
Sept. 25 (Tue) | KaiHo Wong | Algebraic links and exotic spheres |
Oct. 4 (Thu) | Yun Su (Suky) | Alexander polynomial of complex algebraic curve (Note the different day but same time and location) |
Oct. 11 (Thu) | Yongqiang Liu | Sheaves and Hypercohomology |
Oct. 18 (Thu) | Jeff Poskin | Toric Varieties II |
Nov. 1 (Thu) | Yongqiang Liu | Mixed Hodge Structure |
Nov. 15 (Thu) | KaiHo Wong | Euler characteristics of hypersurfaces with isolated singularities |
Nov. 29 (Thu) | Markus Banagl, University of Heidelberg | High-Dimensional Topological Field Theory, Automata Theory, and Exotic spheres |
Abstracts
Thu, 10/4: Suky
Alexander polynomial of complex algebraic curve
I will extend the definition of Alexander polynomial in knot theory to an complex algebraic curve. From the definition, it is clear that Alexander polynomial is an topological invariant for curves. I will explain how the topology of a curve control its Alexander polynomial, in terms of the factors. Calculations of some examples will be provided.