Applied/Physical Applied Math: Difference between revisions

From DEV UW-Math Wiki
Jump to navigation Jump to search
mNo edit summary
 
(426 intermediate revisions by 9 users not shown)
Line 1: Line 1:
= Physical Applied Math Journal Club =
= Physical Applied Math Group Meeting =


*'''When:''' Thursdays at 4:00pm (unless there is a departmental meeting)
*'''When:''' Wednesdays at 4:00pm in VV 901
*'''Where:''' 901 Van Vleck Hall
*'''Where:''' 901 Van Vleck Hall
*'''Organizers:''' [http://www.math.wisc.edu/~spagnolie Saverio Spagnolie] and [http://www.math.wisc.edu/~jeanluc Jean-Luc Thiffeault]
*'''Organizers:''' [https://people.math.wisc.edu/~chr/ Chris Rycroft], [http://www.math.wisc.edu/~spagnolie Saverio Spagnolie] and [http://www.math.wisc.edu/~jeanluc Jean-Luc Thiffeault]
*'''To join the Physical Applied Math mailing list:''' See the [https://lists.math.wisc.edu/listinfo/phys_appl_math mailing list website].
*'''Announcements:''' Contact the organizers to join this meeting
 
<br>
 
== Spring 2014 Semester ==


== Fall 2024 ==
 
{| cellpadding="8"
{| cellpadding="8"
!align="left" | date
!align="left" | Date
!align="left" | speaker
!align="left" | Speaker
!align="left" | title/paper
!align="left" | Title
|-
|Sep 11
|Spagnolie
|Growth and buckling of filaments in viscous fluids, Part I
|-
|Sep 18
|Ohm
|Rods in flows: from geometry to fluids
|-
|Sep 25
|–
|
|-
|-
|Jan 30
|Oct 2
|Peter Mueller
|Arthur Young (Rycroft Group)
|Roenby & Aref, [http://scitation.aip.org/content/aip/journal/pof2/22/5/10.1063/1.3406960 On the atmosphere of a moving body], Phys. Fluids (2010)
|Multiphase Taylor–Couette flow transitions
|-
|-
|Feb 13
|Oct 9
|Will Mitchell
|Albritton
|Keaveny & Shelley, [http://www.sciencedirect.com/science/article/pii/S0021999110006741 Applying a second-kind boundary integral equation for surface tractions in Stokes flow], J. Comput. Phys. (2011)
|I thought we already knew everything about shear flows?
|-
|-
|Feb 20
|Oct 16
|Saverio
|Chandler
|Stone & Samuel, [http://prl.aps.org/abstract/PRL/v77/i19/p4102_1 Propulsion of Microorganisms by Surface Distortions] (1996) and Khair & Squires, [http://prl.aps.org/abstract/PRL/v105/i15/e156001 Active Microrheology...] (2010)
|Investigating active liquid crystals using an immersed deformable body
|-
|-
|Feb 27
|Oct 23
|Jim Brunner
|Ohm
|Craciun, Nazarov & Pantea, [http://www.math.wisc.edu/~craciun/PAPERS/Craciun_Nazarov_Pantea_PERSISTENCE_PERMANENCE.pdf Persistence and permanence of mass-action and power-law dynamical systems], SIAM J. Appl. Math. (2013)
|
|
|-
|-
|Mar 6
|Oct 30
|Marko Budisic: Laplacian of a graph
|Thiffeault
| This is a broad subject and even review articles are often too big for our seminar. I will cover topics from
|<s>Maxey-Riley equation for active particles</s> Time-dependent reciprocal theorem
|Mohar, B. (1997). Some applications of Laplace eigenvalues of graphs. In Graph symmetry (Montreal, PQ, 1996) (Vol. 497, pp. 225–275). Dordrecht: Kluwer Acad. Publ. Retrieved from www.fmf.uni-lj.si/~mohar/Papers/Montreal.pdf‎
| with perhaps some extra information from other sources.
|
|-
|-
|Mar 13
|Nov 6
|''faculty meeting''
|
|
|
|
|-
|-
|Mar 20
|Nov 13
|''Spring Break''
|Ahmad Zaid Abassi
|
(UC Berkeley)
|
|Finite-depth standing water waves: theory, computational algorithms, and rational approximations
|-
|-
|Mar 27
|Nov 20
|Tadashi Tokieda
|Jingyi Li
|TBA
|Arrested development and traveling waves of active suspensions in nematic liquid crystals
|-
|-
|Apr 3
|Nov 27
|''Thanksgiving''
|
|
|TBA
|-
|}
|}
== Abstracts ==
=== '''Ahmad Abassi, University of California, Berkeley''' ===
Title: Finite-depth standing water waves: theory, computational algorithms, and rational approximations
We generalize the semi-analytic standing-wave framework of Schwartz and Whitney (1981) and Amick and Toland (1987) to finite-depth standing gravity waves. We propose an appropriate Stokes-expansion ansatz and iterative algorithm to solve the system of differential equations governing the expansion coefficients. We then present a more efficient algorithm that allows us to compute the asymptotic solution to higher orders. Finally, we conclude with numerical simulations of the algorithms implemented in multiple-precision arithmetic on a supercomputer to study the effects of small divisors and the analytic properties of rational approximations of the computed solutions. This is joint work with Jon Wilkening (UC Berkeley).
== Archived semesters ==
*[[Applied/Physical Applied Math/Spring2024|Spring 2024]]
*[[Applied/Physical_Applied_Math/Fall2023|Fall 2023]]
*[[Applied/Physical_Applied_Math/Fall2021|Fall 2021]]
*[[Applied/Physical_Applied_Math/Spring2021|Spring 2021]]
*[[Applied/Physical_Applied_Math/Fall2020|Fall 2020]]
*[[Applied/Physical_Applied_Math/Summer2020|Summer 2020]]
*[[Applied/Physical_Applied_Math/Spring2020|Spring 2020]]
*[[Applied/Physical_Applied_Math/Fall2019|Fall 2019]]
*[[Applied/Physical_Applied_Math/Spring2019|Spring 2019]]
*[[Applied/Physical_Applied_Math/Fall2018|Fall 2018]]
*[[Applied/Physical_Applied_Math/Spring2018|Spring 2018]]
*[[Applied/Physical_Applied_Math/Fall2017|Fall 2017]]
*[[Applied/Physical_Applied_Math/Spring2017|Spring 2017]]
*[[Applied/Physical_Applied_Math/Fall2016|Fall 2016]]
*[[Applied/Physical_Applied_Math/Spring2016|Spring 2016]]
*[[Applied/Physical_Applied_Math/Fall2015|Fall 2015]]
*[[Applied/Physical_Applied_Math/Spring2015|Spring 2015]]
*[[Applied/Physical_Applied_Math/Summer2014|Summer 2014]]
*[[Applied/Physical_Applied_Math/Spring2014|Spring 2014]]


<br>
<br>


----
----
Return to the [[Applied|Applied Mathematics Group Page]]

Latest revision as of 18:32, 4 December 2024

Physical Applied Math Group Meeting

Fall 2024

Date Speaker Title
Sep 11 Spagnolie Growth and buckling of filaments in viscous fluids, Part I
Sep 18 Ohm Rods in flows: from geometry to fluids
Sep 25
Oct 2 Arthur Young (Rycroft Group) Multiphase Taylor–Couette flow transitions
Oct 9 Albritton I thought we already knew everything about shear flows?
Oct 16 Chandler Investigating active liquid crystals using an immersed deformable body
Oct 23 Ohm
Oct 30 Thiffeault Maxey-Riley equation for active particles Time-dependent reciprocal theorem
Nov 6
Nov 13 Ahmad Zaid Abassi

(UC Berkeley)

Finite-depth standing water waves: theory, computational algorithms, and rational approximations
Nov 20 Jingyi Li Arrested development and traveling waves of active suspensions in nematic liquid crystals
Nov 27 Thanksgiving

Abstracts

Ahmad Abassi, University of California, Berkeley

Title: Finite-depth standing water waves: theory, computational algorithms, and rational approximations

We generalize the semi-analytic standing-wave framework of Schwartz and Whitney (1981) and Amick and Toland (1987) to finite-depth standing gravity waves. We propose an appropriate Stokes-expansion ansatz and iterative algorithm to solve the system of differential equations governing the expansion coefficients. We then present a more efficient algorithm that allows us to compute the asymptotic solution to higher orders. Finally, we conclude with numerical simulations of the algorithms implemented in multiple-precision arithmetic on a supercomputer to study the effects of small divisors and the analytic properties of rational approximations of the computed solutions. This is joint work with Jon Wilkening (UC Berkeley).

Archived semesters



Return to the Applied Mathematics Group Page