AMS Student Chapter Seminar: Difference between revisions

From DEV UW-Math Wiki
Jump to navigation Jump to search
No edit summary
 
(28 intermediate revisions by 3 users not shown)
Line 1: Line 1:
The AMS Student Chapter Seminar (aka Donut Seminar) is an informal, graduate student seminar on a wide range of mathematical topics. The goal of the seminar is to promote community building and give graduate students an opportunity to communicate fun, accessible math to their peers in a stress-free (but not sugar-free) environment. Pastries (usually donuts) will be provided.
The AMS Student Chapter Seminar (aka Donut Seminar) is an informal, graduate student seminar on a wide range of mathematical topics. The goal of the seminar is to promote community building and give graduate students an opportunity to communicate fun, accessible math to their peers in a stress-free (but not sugar-free) environment. Pastries (usually donuts) will be provided.


* '''When:''' Wednesdays, 3:30 PM – 4:00 PM
* '''When:''' Thursdays 4:00-4:30pm
* '''Where:''' Van Vleck, 9th floor lounge (unless otherwise announced)
* '''Where:''' Van Vleck, 9th floor lounge (unless otherwise announced)
* '''Organizers:''' [https://people.math.wisc.edu/~ywu495/ Yandi Wu], Maya Banks
* '''Organizers:''' Ivan Aidun, Kaiyi Huang, Ethan Schondorf


Everyone is welcome to give a talk. To sign up, please contact one of the organizers with a title and abstract. Talks are 25 minutes long and should avoid assuming significant mathematical background beyond first-year graduate courses.
Everyone is welcome to give a talk. To sign up, please contact one of the organizers with a title and abstract. Talks are 25 minutes long and should avoid assuming significant mathematical background beyond first-year graduate courses.
Line 9: Line 9:
The schedule of talks from past semesters can be found [[AMS Student Chapter Seminar, previous semesters|here]].
The schedule of talks from past semesters can be found [[AMS Student Chapter Seminar, previous semesters|here]].


== Fall 2021 ==
== Fall 2024 ==
<center>
{| cellspacing="5" cellpadding="14" border="0" style="color:black; font-size:120%"
! align="center" width="200" bgcolor="#D0D0D0" |'''Date'''
! align="center" width="200" bgcolor="#A6B658" |'''Speaker'''
! align="center" width="300" bgcolor="#BCD2EE" |'''Title'''
! align="center" width="400" bgcolor="#BCD2EE" |'''Abstract'''
|-
| bgcolor="#D0D0D0" |September 12
| bgcolor="#A6B658" |Ari Davidovsky
| bgcolor="#BCD2EE" |95% of people can't solve this!
| bgcolor="#BCD2EE" | [[File:Image.png|360px]]


=== September 29, John Cobb ===
We will attempt to answer this question and along the way explore how algebra and geometry work together to solve problems in number theory.
|-
| bgcolor="#D0D0D0" |September 19
| bgcolor="#A6B658" |CANCELLED
| bgcolor="#BCD2EE" |NONE
| bgcolor="#BCD2EE" |NONE
|-
| bgcolor="#D0D0D0" |September 26
| bgcolor="#A6B658" |Mateo Morales
| bgcolor="#BCD2EE" |Officially petitioning the department to acquire a ping pong table.
| bgcolor="#BCD2EE" |Ever want to prove something is a free group of rank 2? Me too. One way to do this is to use a ping pong argument of how a group generated by two elements acts on a set.
I will illustrate the ping pong argument using an example of matrices, explain how it works, and explain why, kinda.


Title: Rooms on a Sphere
Very approachable if you know what a group is but does require tons of ping pong experience.
 
|-
Abstract: A classic combinatorial lemma becomes very simple to state and prove when on the surface of a sphere, leading to easy constructive proofs of some other well known theorems.
| bgcolor="#D0D0D0" |October 3
 
| bgcolor="#A6B658" |Karthik Ravishankar
=== October 6, Karan Srivastava ===
| bgcolor="#BCD2EE" |Incompleteness for the working mathematician
 
| bgcolor="#BCD2EE" |In this talk we'll take a look at Gödels famous incompleteness theorems and look at some of its immediate as well as interesting consequences. No background in logic is necessary!
Title: An 'almost impossible' puzzle and group theory
|-
 
| bgcolor="#D0D0D0" |October 10
Abstract: You're given a chessboard with a randomly oriented coin on every square and a key hidden under one of them; player one knows where the key is and flips a single coin; player 2, using only the information of the new coin arrangement must determine where the key is. Is there a winning strategy? In this talk, we will explore this classic puzzle in a more generalized context, with n squares and d sided dice on every square. We'll see when the game is solvable and in doing so, see how the answer relies on group theory and the existence of certain groups.
| bgcolor="#A6B658" |Elizabeth Hankins
 
| bgcolor="#BCD2EE" |Mathematical Origami and Flat-Foldability
=== October 13, John Yin ===
| bgcolor="#BCD2EE" |If you've ever unfolded a piece of origami, you might have noticed complicated symmetries in the pattern of creases left behind. What patterns of lines can and cannot be folded into origami? And why is it sometimes hard to determine?
 
|-
Title: TBA
| bgcolor="#D0D0D0" |October 17
 
| bgcolor="#A6B658" |CANCELLED
Abstract: TBA
| bgcolor="#BCD2EE" |NONE
 
| bgcolor="#BCD2EE" |NONE
=== October 20, Varun Gudibanda ===
|-
 
| bgcolor="#D0D0D0" |October 24
Title: TBA
| bgcolor="#A6B658" |CANCELLED
 
| bgcolor="#BCD2EE" |NONE
Abstract: TBA
| bgcolor="#BCD2EE" |NONE
 
|-
=== October 27, Andrew Krenz ===
| bgcolor="#D0D0D0" |October 31
 
| bgcolor="#A6B658" |Jacob Wood
Title: The 3-sphere via the Hopf fibration
| bgcolor="#BCD2EE" |What is the length of a <s>potato</s> pumpkin?
 
| bgcolor="#BCD2EE" |How many is a jack-o-lantern? What is the length of a pumpkin? These questions sound like nonsense, but they have perfectly reasonable interpretations with perfectly reasonable answers. On our journey through the haunted house with two rooms, we will encounter some scary characters like differential topology and measure theory. Do not fear; little to no experience in either subject is required.
Abstract: The Hopf fibration is a map from $S^3$ to $S^2$.  The preimage (or fiber) of every point under this map is a copy of $S^1$. In this talk I will explain exactly how these circles “fit together” inside the 3-sphere.  Along the way we’ll discover some other interesting facts in some hands-on demonstrations using paper and scissors.  If there is time I hope to also relate our new understanding of $S^3$ to some other familiar models.
|-
 
| bgcolor="#D0D0D0" |November 7
 
| bgcolor="#A6B658" |CANCELLED: DISTINGUISHED LECTURE
=== November 3, Asvin G  ===
| bgcolor="#BCD2EE" |NONE
 
| bgcolor="#BCD2EE" |NONE
Title: Probabilistic methods in math
|-
 
| bgcolor="#D0D0D0" |November 14
Abstract: I'll explain how you can provr that something has to be true because it's probably true in a couple of examples. One of the proofs is by Erdos on the "sum set problem" and it is a proof that "only an alien could have come up with" according to a friend.
| bgcolor="#A6B658" |Sapir Ben-Shahar
 
| bgcolor="#BCD2EE" |Hexaflexagons
=== November 10, Ivan Aidun ===
| bgcolor="#BCD2EE" |Come along for some hexaflexafun and discover the mysterious properties of hexaflexagons, the bestagons! Learn how to make and navigate through the folds of your very own paper hexaflexagon. No prior knowledge of hexagons (or hexaflexagons) is assumed.
[[File:Screen Shot 2021-11-15 at 3.25.38 PM.png|thumb]]
|-
Title: Intersection Permutations
| bgcolor="#D0D0D0" |November 21
 
| bgcolor="#A6B658" |Andrew Krenz
Abstract: During a boring meeting, your buddy slips you a Paris metro ticket with this cryptic diagram (see left).
| bgcolor="#BCD2EE" |All concepts are database queries
 
| bgcolor="#BCD2EE" |A celebrated result of applied category theory states that the category of small categories is equivalent to the category of database schemas. Therefore, every theorem about small categories can be interpreted as a theorem about databases.  Maybe you've heard someone repeat Mac Lane's famous slogan "all concepts are Kan extensions."  In this talk, I'll give a high-level overview of/introduction to categorical database theory (developed by David Spivak) wherein Kan extensions play the role of regular every day database queries.  No familiarity with categories or databases will be assumed.
What could it mean?  The only way to find out is to come to this Donut Talk!
|-
 
| bgcolor="#D0D0D0" |November 28
=== December 1, Yuxi Han  ===
| bgcolor="#A6B658" |THANKSGIVING
 
| bgcolor="#BCD2EE" |NONE
Title: Homocidal Chaffeur Problem
| bgcolor="#BCD2EE" |NONE
 
|-
Abstract: I will briefly introduce the canonical example of differential games, called the homicidal chauffeur problem and how to use PDE to run down pedestrians optimally.
| bgcolor="#D0D0D0" |December 5
 
| bgcolor="#A6B658" |Caroline Nunn
=== December 8, Owen Goff  ===
| bgcolor="#BCD2EE" |Watch Caroline eat a donut: an introduction to Morse theory
 
| bgcolor="#BCD2EE" |Morse theory has been described as "one of the deepest applications of differential geometry to topology." However, the concepts involved in Morse theory are so simple that you can learn them just by watching me eat a donut (and subsequently watching me give a 20 minute talk explaining Morse theory.) No background is needed beyond calc 3 and a passing familiarity with donuts.
Title: The Mathematics of Cribbage
|}
 
</center>
Abstract: Cribbage is a card game that I have played many times over the years, that involves, among other things, finding subsets of set of numbers that equal a specific value (in the game that value is 15). In this donut talk I will attempt to use the power of combinatorics to find the optimal strategy for this game, particularly to solve one problem -- is there a way you can guarantee yourself at least one extra point by adding an additional card to your set?
 
== Spring 2022 ==
 
=== February 9, Alex Mine ===
 
== Spring 2023 ==
 
=== January 25, Michael Jeserum ===
Title: Totally Realistic Supply Chains
 
Abstract: Inspired by a group of fifth and sixth graders, we'll embark on a journey to discover how supply chains definitely work in real life. Along the way, we'll eat donuts, learn about graphs and the magical world of chip-firing, and maybe even make new friends!
 
=== February 1, Summer al Hamdani ===
Title: Monkeying Around: On the Infinite Monkey Theorem
 
Abstract: Will monkeys keyboard bashing eventually type all of Hamlet? Yes, almost surely. We will discuss the history and proof of the infinite monkey theorem.
 
=== February 8, Dionel Jaime ===
Title: The weird world of polynomial curve fitting.
 
Abstract: You have some continuous function, and you decide you want to find a polynomial curve that looks a lot like your function. That is a very smart and easy thing to do. Nothing will go wrong.
 
=== February 15, Sun Woo Park ===
Speaker: Sun Woo Park
 
Title: What I did in my military service (Universal covers and graph neural networks)
 
Abstract: I'll try to motivate the relations between universal covers of graphs and graph isomorphism classification tasks implemented from graph neural networks. This is a summary of what I did during my 3 years of leave of absence due to compulsory military service in South Korea. Don't worry, everything I'll present here is already made public and not confidential, so you don't need to worry about the South Korean government officials suddenly appearing during the seminar and accusing me of misconduct!
 
=== February 22: NO SEMINAR ===
 
=== February 28, Owen Goff ===
Title: The RSK Correspondence
 
Abstract:  In this talk I will show a brilliant 1-to-1 mapping between permutations on n elements and pairs of Standard Young Tableau of size n. This bijection, known as the Robinson-Schensted-Knuth correspondence, has many beautiful properties. It also tells you the best way for people to escape a series of rooms.
 
=== March 8, Pubo Huang  ===
Title: 2-dimensional Dynamical Billiards
 
Abstract: We have all played, or watched, a game of pool, and you probably noticed that when a ball hits the cushion on the table, its angle of rebound is equal to its angle of incidence.
 
Dynamical Billiards is an idealization and generalization of the popular game called pool (or billiards, or snooker), and it aims to understand the trajectory (as time goes to infinity) of a ball on a frictionless table that rebounds perfectly. During the talk, I will provide a lot of examples of dynamical billiards on an actual table and compare it with its mathematical counterpart. We will also see how we can relate billiards on a rectangular table to the classical example of circle rotation in dynamics.
 
=== March 16: NO SEMINAR (SPRING BREAK) ===

Latest revision as of 19:14, 2 December 2024

The AMS Student Chapter Seminar (aka Donut Seminar) is an informal, graduate student seminar on a wide range of mathematical topics. The goal of the seminar is to promote community building and give graduate students an opportunity to communicate fun, accessible math to their peers in a stress-free (but not sugar-free) environment. Pastries (usually donuts) will be provided.

  • When: Thursdays 4:00-4:30pm
  • Where: Van Vleck, 9th floor lounge (unless otherwise announced)
  • Organizers: Ivan Aidun, Kaiyi Huang, Ethan Schondorf

Everyone is welcome to give a talk. To sign up, please contact one of the organizers with a title and abstract. Talks are 25 minutes long and should avoid assuming significant mathematical background beyond first-year graduate courses.

The schedule of talks from past semesters can be found here.

Fall 2024

Date Speaker Title Abstract
September 12 Ari Davidovsky 95% of people can't solve this! Image.png

We will attempt to answer this question and along the way explore how algebra and geometry work together to solve problems in number theory.

September 19 CANCELLED NONE NONE
September 26 Mateo Morales Officially petitioning the department to acquire a ping pong table. Ever want to prove something is a free group of rank 2? Me too. One way to do this is to use a ping pong argument of how a group generated by two elements acts on a set.

I will illustrate the ping pong argument using an example of matrices, explain how it works, and explain why, kinda.

Very approachable if you know what a group is but does require tons of ping pong experience.

October 3 Karthik Ravishankar Incompleteness for the working mathematician In this talk we'll take a look at Gödels famous incompleteness theorems and look at some of its immediate as well as interesting consequences. No background in logic is necessary!
October 10 Elizabeth Hankins Mathematical Origami and Flat-Foldability If you've ever unfolded a piece of origami, you might have noticed complicated symmetries in the pattern of creases left behind. What patterns of lines can and cannot be folded into origami? And why is it sometimes hard to determine?
October 17 CANCELLED NONE NONE
October 24 CANCELLED NONE NONE
October 31 Jacob Wood What is the length of a potato pumpkin? How many is a jack-o-lantern? What is the length of a pumpkin? These questions sound like nonsense, but they have perfectly reasonable interpretations with perfectly reasonable answers. On our journey through the haunted house with two rooms, we will encounter some scary characters like differential topology and measure theory. Do not fear; little to no experience in either subject is required.
November 7 CANCELLED: DISTINGUISHED LECTURE NONE NONE
November 14 Sapir Ben-Shahar Hexaflexagons Come along for some hexaflexafun and discover the mysterious properties of hexaflexagons, the bestagons! Learn how to make and navigate through the folds of your very own paper hexaflexagon. No prior knowledge of hexagons (or hexaflexagons) is assumed.
November 21 Andrew Krenz All concepts are database queries A celebrated result of applied category theory states that the category of small categories is equivalent to the category of database schemas. Therefore, every theorem about small categories can be interpreted as a theorem about databases.  Maybe you've heard someone repeat Mac Lane's famous slogan "all concepts are Kan extensions."  In this talk, I'll give a high-level overview of/introduction to categorical database theory (developed by David Spivak) wherein Kan extensions play the role of regular every day database queries.  No familiarity with categories or databases will be assumed.
November 28 THANKSGIVING NONE NONE
December 5 Caroline Nunn Watch Caroline eat a donut: an introduction to Morse theory Morse theory has been described as "one of the deepest applications of differential geometry to topology." However, the concepts involved in Morse theory are so simple that you can learn them just by watching me eat a donut (and subsequently watching me give a 20 minute talk explaining Morse theory.) No background is needed beyond calc 3 and a passing familiarity with donuts.