AMS Student Chapter Seminar: Difference between revisions

From DEV UW-Math Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 17: Line 17:
Abstract: A classic combinatorial lemma becomes very simple to state and prove when on the surface of a sphere, leading to easy constructive proofs of some other well known theorems.
Abstract: A classic combinatorial lemma becomes very simple to state and prove when on the surface of a sphere, leading to easy constructive proofs of some other well known theorems.


=== October 6, TBA ===
=== October 6, Karan Srivastava ===


Title: TBA
Title: An 'almost impossible' puzzle and group theory


Abstract: TBA
Abstract: You're given a chessboard with a randomly oriented coin on every square and a key hidden under one of them; player one knows where the key is and flips a single coin; player 2, using only the information of the new coin arrangement must determine where the key is. Is there a winning strategy? In this talk, we will explore this classic puzzle in a more generalized context, with n squares and d sided dice on every square. We'll see when the game is solvable and in doing so, see how the answer relies on group theory and the existence of certain groups.


=== October 13, TBA ===
=== October 13, John Yin ===


Title: TBA
Title: TBA
Line 29: Line 29:
Abstract: TBA
Abstract: TBA


=== October 20, TBA ===
=== October 20, Varun Gudibanda ===


Title: TBA
Title: TBA
Line 35: Line 35:
Abstract: TBA
Abstract: TBA


=== October 27, TBA ===
=== October 27, Andrew Krenz ===


Title: TBA
Title: The 3-sphere via the Hopf fibration
 
Abstract: The Hopf fibration is a map from $S^3$ to $S^2$.  The preimage (or fiber) of every point under this map is a copy of $S^1$.  In this talk I will explain exactly how these circles “fit together” inside the 3-sphere.  Along the way we’ll discover some other interesting facts in some hands-on demonstrations using paper and scissors.  If there is time I hope to also relate our new understanding of $S^3$ to some other familiar models.


Abstract: TBA


=== November 3, TBA ===
=== November 3, TBA ===

Revision as of 20:31, 1 October 2021

The AMS Student Chapter Seminar (aka Donut Seminar) is an informal, graduate student seminar on a wide range of mathematical topics. The goal of the seminar is to promote community building and give graduate students an opportunity to communicate fun, accessible math to their peers in a stress-free (but not sugar-free) environment. Pastries (usually donuts) will be provided.

  • When: Wednesdays, 3:45 PM – 4:15 PM
  • Where: Van Vleck, 9th floor lounge (unless otherwise announced)
  • Organizers: Yandi Wu, Maya Banks

Everyone is welcome to give a talk. To sign up, please contact one of the organizers with a title and abstract. Talks are 25 minutes long and should avoid assuming significant mathematical background beyond first-year graduate courses.

The schedule of talks from past semesters can be found here.

Fall 2021

September 29, John Cobb

Title: Rooms on a Sphere

Abstract: A classic combinatorial lemma becomes very simple to state and prove when on the surface of a sphere, leading to easy constructive proofs of some other well known theorems.

October 6, Karan Srivastava

Title: An 'almost impossible' puzzle and group theory

Abstract: You're given a chessboard with a randomly oriented coin on every square and a key hidden under one of them; player one knows where the key is and flips a single coin; player 2, using only the information of the new coin arrangement must determine where the key is. Is there a winning strategy? In this talk, we will explore this classic puzzle in a more generalized context, with n squares and d sided dice on every square. We'll see when the game is solvable and in doing so, see how the answer relies on group theory and the existence of certain groups.

October 13, John Yin

Title: TBA

Abstract: TBA

October 20, Varun Gudibanda

Title: TBA

Abstract: TBA

October 27, Andrew Krenz

Title: The 3-sphere via the Hopf fibration

Abstract: The Hopf fibration is a map from $S^3$ to $S^2$. The preimage (or fiber) of every point under this map is a copy of $S^1$. In this talk I will explain exactly how these circles “fit together” inside the 3-sphere. Along the way we’ll discover some other interesting facts in some hands-on demonstrations using paper and scissors. If there is time I hope to also relate our new understanding of $S^3$ to some other familiar models.


November 3, TBA

Title: TBA

Abstract: TBA

November 10, TBA

Title: TBA

Abstract: TBA

November 17, TBA

Title: TBA

Abstract: TBA

November 24, TBA

Title: TBA

Abstract: TBA

December 1, TBA

Title: TBA

Abstract: TBA

December 8, TBA

Title: TBA

Abstract: TBA