Logic Qualifying Exam Prep 11/2/2021—Miller

For the last session, you solved this question from Summer 2012:

EO0. Show that there exists an N' = PA and an a € N\ N so that a is
definable in \V.

In a later qual, we asked a more sophisticated version:

E1. Let M be a model of PA that is not elementarily equivalent to (N, +,-).
Show that there is an infinite element of M that is definable.

What about nonstandard models of PA that are elementarily equivalent
to (N, +,-)? In other words, what about nonstandard models of true arith-
metic? This was never a qual problem, but for completeness:

E2. Let M be a model of True Arithmetic, i.e., the theory of (N, +,-). Show
that no infinite element of M is definable.

Incompleteness is intimately linked to computable inseparability.

E3. Consider the sets

A={"p": PAF ¢},
B={"¢": PAF -},

where "¢ is the Godel code of the sentence . Show that A and B are
computably inseparable. I.e., show that there is no computable set C' such
that AC C and BN C = ().

The next question extends the fact that no computably enumerable, con-
sistent extension of PA is complete.

E4. Let Ty and T} be computably enumerable, consistent extensions of PA
(although, To U T} need not be consistent). Show that there is a sentence 1
that is independent of both Ty and T7.

That’s enough about PA and its extensions. The next few problems are
basic model theory.

E5. Call a model M “nice” iff for every a,b € M, there is an automorphism
of M that moves a to b. Let T be a theory in a countable language. Show
that if T" has a nice model of some infinite cardinality, then 7" has nice models
of all infinite cardinalities.
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E6. Let L be a language which includes a unary relation symbol R. Let ¢
be an L-sentence and I' a set of L-sentences neither of which contains the
symbol R. If I' proves ¢ in the language L, must there be a deduction of ¢
from I" in which R does not occur (i.e., in the language L — {R})? If so,
prove that there is always such a deduction; and if not, describe I' and ¢
which provide a counterexample.

E7. Let L be the language containing one binary relation symbol. A graph
is a symmetric irreflexive binary relation. It is n-colorable iff there is a map
from its universe into n such that no two elements in the relation are assigned
the same value.

(a) Show that there is a first order L-theory T" whose models are exactly
the 3-colorable graphs.

(b) Prove that T is not finitely axiomatizable.

We finish with a strange combinatorial problem.

E8. Prove that there is no family {A, : @ < w;} C P(w) such that for all
a < fB: Ag\A, is infinite and |A,\Ag| < 7.
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EO ans. By the Incompleteness Theorem, we can find a Ag-sentence ¢(x)
such that N |= Vo —p(x) but PA + 3z ¢(z) is consistent. Then any model
N E PA + 3z p(x) contains, by induction, a least witness a for ¢, which
must be both nonstandard and definable.

E1 ans. Let ¢ be a formula (in prenex normal form) of lowest quantifier-
complexity so that M = ¢ and N does not. We observe that ¢ must begin
with an 3. In particular, ¢ cannot begin with a V. Otherwise, N = =y, and
—p = Jx1p where 1 is of lower quantifier-complexity. But then N |= v(z) for
some x. Let £ = 1+14---41 (i.e. the term which represents the element x).
Then N = 9(Z). But then this is a sentence of lower quantifier-complexity
than ¢, and thus M | ¢(z). Thus M = ¢. So, ¢ must be 3, for some
n. Let ¢ = Jzip. Let a € M be the least witness for ¢). The induction
axioms in PA give us that there is a least witness. This witness is definable.
We need only conclude that it is infinite. Suppose towards a contradiction
that z is finite. Then x is represented by a term 2 =1+ 1+ --- 4+ 1. But
then M | ¢(Z). Since ¢ is of lower quantifier-complexity than ¢, we can
conclude that N = (), so N |= ¢, a contradiction.

E2 ans. If ¢(x) defines a element of M, then (3!n) p(n) holds in TA. Let
n be the witness from N. Then ¢(n) holds in M as well, so ¢(z) defines a
finite element of M.

E3 ans. There are various ways to solve this problem. One is to use the
fact (from class) that no complete consistent extension of PA is computable.
Now show that from a separator C', we can compute a complete consistent
extension of PA.

Another way: Use The Godel Fixed Point Lemma. Suppose that C'is a
computable separator for A and B. Then let ¢)(x) be the formula that defines
C'. That is, for every x, PAF ¢ (z) if and only if z € C' and PA + —)(z) if
and only if z ¢ C. Then use the Gédel fixed point lemma to get a formula ¢
so that PAF ¢ <> —p(TpT). If T € C, then PAF ¢("¢), so PAF —p,
so "¢ € B contradicting that BN C = (). Similarly, if "¢ ¢ C, then
PAF =(TpT) and PAF ¢, s0 "o € AN C, contradicting A C C.

E4 ans. Call disjoint c.e. sets A and B computably inseparable if there is
no computable set C' such that A is a subset of C' and B is disjoint from C.
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(Such a set C' is called a separator.)

Given a c.e. set A, there is a ¥;-formula ¢4 in the language of arithmetic
such that n € A if and only if PA F p4(n). (Note that it’s not true, in
general, that PA F —p4(n) for n ¢ A. Indeed, this would mean that A is
computable.)

Let A and B be computably inseparable c.e. sets. Let ¢4 and ppg be the
corresponding formulas; more precisely, we modify p4(n) to say that there is
a witness that n € A which is < the least witness that n € B. Similarly, we
modify pp(n) to say that there is a witness that n € B which is < the least
witness that n € A. Since A and B are disjoint, these modifications don’t
seem like they would do anything, but now we have:

PA F @4(n) = —pp(n) and, equivalently, PA F pp(n) — —@a(n).

Now let Ty and T} be c.e. consistent extensions of PA. Such extensions
can make new formulas of the form @4(n) and pp(n) true. Let Ay be the
set of n such that Ty F @a(n). Define A;, By, and B similarly. Since
PA F pp(n) — —pa(n), we know that for every n € By, hence every n € B,
To F —@a(n). The same holds for T;.

Case 1: There is an n such that @4(n) is independent of both Ty and 77.
So we're done.

Case 2: No such n exists. We will get a contradiction in this case. Define
a computable set C' as follows. To decide if n € C, enumerate all proofs
from Ty and T} until one of the theories is first seen to prove either v 4(n) or
—pa(n). This must happen eventually because we are in case 2. If we see a
proof of p4(n), we put n € C. Otherwise, n ¢ C.

Now note that C' is a computable superset of A: If n € A then both
theories prove p4(n), hence can’t prove —p4(n). It’s also disjoint from B:
If n € B then both theories prove —¢(n), hence neither can prove @4(n).
Therefore, C' is a computable separator of A and B, which cannot exist.

E5 ans. Expand the language by adding a ternary function A(z,y, z). The
intent is that for each “fixed” z,y, A(x,y, z) is an automorphism that moves x
to y.

To formalize this, add an axiom saying that for each x,y, the map z
A(z,y, z) is a permutation of the model moving x to y. Also, for each symbol
of the language, add an axiom saying that this permutation is an automor-
phism with respect to that symbol. For example, if P is three-placed predi-
cate, add an axiom saying that for all z,y, and all 21, 29, 23, Wy, W, w3: Wy =
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A(z,y,21) Nwy = A(x,y,20) Nws = A(x,y, z3) implies that P(z1, 29, 23) <>
P<w1, Wa, wd)

Then just apply the standard Lowenheim-Skolem Theorem to the new
theory in the expanded language.

E6 ans. Straightforward application of the Completeness theorem: If T’
proves ¢, then any model M of I" is a model of . The same then also holds
for any model M of T" in the language L — { R}, so again by Completeness,
there is a deduction of ¢ from I' in the language L — {R}.

E7 ans. (a) For each n > 3 there is a first-order sentence which says that
every subset of size n can be partitioned into three subsets none of which
contains adjacent vertices. (b) For any odd n > 1 an n-cycle is not 2-
colorable. Adding another point adjacent to all vertices in the n-cycle gives
a graph which is not 3-colorable but every proper subgraph is.

E8 ans. Assume that we had such {A,: @ < w;}. For each &, choose
Be C Ag1\A¢ with |Be| = 8. Since |[w]?| = No, fix &, 7 such that £ <£+1 <
n<mn+1and B¢ = B,. Let B= B¢ = B,,. Then B C A¢y and BNA, =10,
so B C Agq\A,), so |Agi1\Ay| > 8, which is a contradiction (taking o = £+1
and 5 =n).



