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For the last session, you solved this question from Summer 2012:

E0. Show that there exists an N |= PA and an a ∈ N r N so that a is
definable in N .

In a later qual, we asked a more sophisticated version:

E1. Let M be a model of PA that is not elementarily equivalent to (N,+, ·).
Show that there is an infinite element of M that is definable.

What about nonstandard models of PA that are elementarily equivalent
to (N,+, ·)? In other words, what about nonstandard models of true arith-
metic? This was never a qual problem, but for completeness:

E2. Let M be a model of True Arithmetic, i.e., the theory of (N,+, ·). Show
that no infinite element of M is definable.

Incompleteness is intimately linked to computable inseparability.

E3. Consider the sets

A = {pϕq : PA ` ϕ},
B = {pϕq : PA ` ¬ϕ},

where pϕq is the Gödel code of the sentence ϕ. Show that A and B are
computably inseparable. I.e., show that there is no computable set C such
that A ⊆ C and B ∩ C = ∅.

The next question extends the fact that no computably enumerable, con-
sistent extension of PA is complete.

E4. Let T0 and T1 be computably enumerable, consistent extensions of PA
(although, T0 ∪ T1 need not be consistent). Show that there is a sentence ψ
that is independent of both T0 and T1.

That’s enough about PA and its extensions. The next few problems are
basic model theory.

E5. Call a model M “nice” iff for every a, b ∈M , there is an automorphism
of M that moves a to b. Let T be a theory in a countable language. Show
that if T has a nice model of some infinite cardinality, then T has nice models
of all infinite cardinalities.
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E6. Let L be a language which includes a unary relation symbol R. Let ϕ
be an L-sentence and Γ a set of L-sentences neither of which contains the
symbol R. If Γ proves ϕ in the language L, must there be a deduction of ϕ
from Γ in which R does not occur (i.e., in the language L − {R})? If so,
prove that there is always such a deduction; and if not, describe Γ and ϕ
which provide a counterexample.

E7. Let L be the language containing one binary relation symbol. A graph
is a symmetric irreflexive binary relation. It is n-colorable iff there is a map
from its universe into n such that no two elements in the relation are assigned
the same value.

(a) Show that there is a first order L-theory T whose models are exactly
the 3-colorable graphs.

(b) Prove that T is not finitely axiomatizable.

We finish with a strange combinatorial problem.

E8. Prove that there is no family {Aα : α < ω1} ⊆ P(ω) such that for all
α < β: Aβ\Aα is infinite and |Aα\Aβ| ≤ 7.
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E0 ans. By the Incompleteness Theorem, we can find a ∆0-sentence ϕ(x)
such that N |= ∀x¬ϕ(x) but PA + ∃xϕ(x) is consistent. Then any model
N |= PA + ∃xϕ(x) contains, by induction, a least witness a for ϕ, which
must be both nonstandard and definable.

E1 ans. Let ϕ be a formula (in prenex normal form) of lowest quantifier-
complexity so that M |= ϕ and N does not. We observe that ϕ must begin
with an ∃. In particular, ϕ cannot begin with a ∀. Otherwise, N |= ¬ϕ, and
¬ϕ = ∃xψ where ψ is of lower quantifier-complexity. But then N |= ψ(x) for
some x. Let x̂ = 1+1+ · · ·+1 (i.e. the term which represents the element x).
Then N |= ψ(x̂). But then this is a sentence of lower quantifier-complexity
than ϕ, and thus M |= ψ(x̂). Thus M |= ϕ. So, ϕ must be ∃n for some
n. Let ϕ = ∃xψ. Let a ∈ M be the least witness for ψ. The induction
axioms in PA give us that there is a least witness. This witness is definable.
We need only conclude that it is infinite. Suppose towards a contradiction
that x is finite. Then x is represented by a term x̂ = 1 + 1 + · · · + 1. But
then M |= ψ(x̂). Since ψ is of lower quantifier-complexity than ϕ, we can
conclude that N |= ψ(x̂), so N |= ϕ, a contradiction.

E2 ans. If ϕ(x) defines a element of M , then (∃!n) ϕ(n) holds in TA. Let
n be the witness from N. Then ϕ(n) holds in M as well, so ϕ(x) defines a
finite element of M .

E3 ans. There are various ways to solve this problem. One is to use the
fact (from class) that no complete consistent extension of PA is computable.
Now show that from a separator C, we can compute a complete consistent
extension of PA.

Another way: Use The Gödel Fixed Point Lemma. Suppose that C is a
computable separator for A and B. Then let ψ(x) be the formula that defines
C. That is, for every x, PA ` ψ(x) if and only if x ∈ C and PA ` ¬ψ(x) if
and only if x /∈ C. Then use the Gödel fixed point lemma to get a formula ϕ
so that PA ` ϕ ↔ ¬ψ(pϕq). If pϕq ∈ C, then PA ` ψ(pϕq), so PA ` ¬ϕ,
so pϕq ∈ B contradicting that B ∩ C = ∅. Similarly, if pϕq /∈ C, then
PA ` ¬ψ(pϕq) and PA ` ϕ, so pϕq ∈ Ar C, contradicting A ⊆ C.

E4 ans. Call disjoint c.e. sets A and B computably inseparable if there is
no computable set C such that A is a subset of C and B is disjoint from C.
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(Such a set C is called a separator.)
Given a c.e. set A, there is a Σ1-formula ϕA in the language of arithmetic

such that n ∈ A if and only if PA ` ϕA(n). (Note that it’s not true, in
general, that PA ` ¬ϕA(n) for n /∈ A. Indeed, this would mean that A is
computable.)

Let A and B be computably inseparable c.e. sets. Let ϕA and ϕB be the
corresponding formulas; more precisely, we modify ϕA(n) to say that there is
a witness that n ∈ A which is ≤ the least witness that n ∈ B. Similarly, we
modify ϕB(n) to say that there is a witness that n ∈ B which is < the least
witness that n ∈ A. Since A and B are disjoint, these modifications don’t
seem like they would do anything, but now we have:

PA ` ϕA(n)→ ¬ϕB(n) and, equivalently, PA ` ϕB(n)→ ¬ϕA(n).
Now let T0 and T1 be c.e. consistent extensions of PA. Such extensions

can make new formulas of the form ϕA(n) and ϕB(n) true. Let A0 be the
set of n such that T0 ` ϕA(n). Define A1, B0, and B1 similarly. Since
PA ` ϕB(n)→ ¬ϕA(n), we know that for every n ∈ B0, hence every n ∈ B,
T0 ` ¬ϕA(n). The same holds for T1.

Case 1: There is an n such that ϕA(n) is independent of both T0 and T1.
So we’re done.

Case 2: No such n exists. We will get a contradiction in this case. Define
a computable set C as follows. To decide if n ∈ C, enumerate all proofs
from T0 and T1 until one of the theories is first seen to prove either ϕA(n) or
¬ϕA(n). This must happen eventually because we are in case 2. If we see a
proof of ϕA(n), we put n ∈ C. Otherwise, n /∈ C.

Now note that C is a computable superset of A: If n ∈ A then both
theories prove ϕA(n), hence can’t prove ¬ϕA(n). It’s also disjoint from B:
If n ∈ B then both theories prove ¬ϕA(n), hence neither can prove ϕA(n).
Therefore, C is a computable separator of A and B, which cannot exist.

E5 ans. Expand the language by adding a ternary function A(x, y, z). The
intent is that for each “fixed” x, y, A(x, y, z) is an automorphism that moves x
to y.

To formalize this, add an axiom saying that for each x, y, the map z 7→
A(x, y, z) is a permutation of the model moving x to y. Also, for each symbol
of the language, add an axiom saying that this permutation is an automor-
phism with respect to that symbol. For example, if P is three-placed predi-
cate, add an axiom saying that for all x, y, and all z1, z2, z3, w1, w2, w3: w1 =
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A(x, y, z1) ∧ w2 = A(x, y, z2) ∧ w3 = A(x, y, z3) implies that P (z1, z2, z3) ↔
P (w1, w2, w3).

Then just apply the standard Löwenheim-Skolem Theorem to the new
theory in the expanded language.

E6 ans. Straightforward application of the Completeness theorem: If Γ
proves ϕ, then any model M of Γ is a model of ϕ. The same then also holds
for any model M of Γ in the language L − {R}, so again by Completeness,
there is a deduction of ϕ from Γ in the language L− {R}.

E7 ans. (a) For each n ≥ 3 there is a first-order sentence which says that
every subset of size n can be partitioned into three subsets none of which
contains adjacent vertices. (b) For any odd n > 1 an n-cycle is not 2-
colorable. Adding another point adjacent to all vertices in the n-cycle gives
a graph which is not 3-colorable but every proper subgraph is.

E8 ans. Assume that we had such {Aα : α < ω1}. For each ξ, choose
Bξ ⊂ Aξ+1\Aξ with |Bξ| = 8. Since |[ω]8| = ℵ0, fix ξ, η such that ξ < ξ+ 1 <
η < η+ 1 and Bξ = Bη. Let B = Bξ = Bη. Then B ⊆ Aξ+1 and B ∩Aη = ∅,
so B ⊆ Aξ+1\Aη, so |Aξ+1\Aη| ≥ 8, which is a contradiction (taking α = ξ+1
and β = η).


