Math 764. Homework 10

Due Wednesday, April 29th

1. Let X be a variety. By construction, a vector field τ on an open subset $U \subset X$ defines a derivation $D_{\tau}: \mathcal{O}_U \to \mathcal{O}_U$, which we can view as the directional derivative in the direction of τ . Prove that for any two vector fields τ_1, τ_2 on U, there is a vector field τ such that

$$D_{\tau} = D_{\tau_1} D_{\tau_2} - D_{\tau_2} D_{\tau_1}.$$

The vector field τ is called the Lie bracket of τ_1 and τ_2 . (Remark: While \mathcal{T}_X is a coherent sheaf, the Lie bracket does not turn it into a coherent Lie algebra, because the Lie bracket is not \mathcal{O}_X -linear. Rather, it becomes what is known as a Lie algebroid over \mathcal{O}_X .)

- **2.** (Galois twist of a variety) Let $\sigma: k \to k$ be an automorphism of the ground field. Let X be a variety over k. Let us define on X a sheaf of k-algebras \mathcal{O}_X^{σ} as follows: as a sheaf of rings, it coincides with \mathcal{O}_X , but the structure of k-vector spaces is twisted by σ (i.e., multiplication by $a \in k$ in \mathcal{O}_X^{σ} corresponds to multiplication by $\sigma(a)$ in \mathcal{O}_X). Prove that there is a different structure of a variety over k on the topological space X such that \mathcal{O}_X^{σ} is the structure sheaf of X with respect to this variety structure. Let us denote this variety by X^{σ} .
- **3.** (The Frobenius twist) Suppose now that k has characteristic p > 0. Denote by $\phi: k \to k$ the Frobenius automorphisms $a \mapsto a^p$ (it is an automorphism because k is algebraically closed). Let X be a variety, and consider on X two sheaves of k-algebras: \mathcal{O}_X and \mathcal{O}_X^{ϕ} . Define a homomorphism $\Phi: \mathcal{O}_X^{\phi} \to \mathcal{O}_X$ by $\Phi(f) = f^p$. (Here we are using the Galois twist defined in the previous problem.) Show that homomorphism Φ yields a morphism of varieties $F: X \mapsto X^{\phi}$ (The Frobenius morphism) such that the corresponding map on underlying topological spaces is the identity.

(Here the word 'yields' means that Φ is identified with the natural map $\mathcal{O}_X^{\phi} = \mathcal{O}_{X^{\phi}} \to F_* \mathcal{O}_X = \mathcal{O}_X$.)

- **4.** In the setting of the previous problem, suppose X is smooth of dimension n. Prove that $F_*\mathcal{O}_X$ is a locally free coherent sheaf on X^{ϕ} and find its rank. (Remark: more or less by construction, F is affine; in a fancier language, the problem asks you to show that F is finite and flat, and to find its degree.)
- **5.** Let X be a smooth curve. Given a locally free coherent sheaf \mathcal{F} on X, let us choose a point $x \in X$ and a subspace V in the fiber of \mathcal{F} at x. Define $\mathcal{F}' \subset \mathcal{F}$ to be the subsheaf of sections s of \mathcal{F} such that $s(x) \in V$. (Here s(x) stands for the image of s in the fiber at x; of course, the condition is imposed only if s is defined at s.)

Prove that \mathcal{F}' is also a locally free coherent sheaf on X. (This defines an operation on vector bundles on X: modification at x.)

- **6.** In the setting of the previous problem, suppose \mathcal{F} is locally free of rank r. Then $\Lambda^r \mathcal{F}$ is an invertible sheaf on X, and therefore it makes sense to talk about its degree. Put $\deg(\mathcal{F}) := \deg(\Lambda^r \mathcal{F})$. Find a formula for $\deg(\mathcal{F}')$, where \mathcal{F}' is a modification of \mathcal{F} .
- 7. Let X be a separated variety. Let $\mathcal{I}_{\Delta} \subset \mathcal{O}_{X \times X}$ be the ideal sheaf of the diagonal $\Delta \subset X \times X$. Prove that there is a (canonical) isomorphism

$$\mathcal{I}_{\Delta}/\mathcal{I}_{\Delta}^2 \simeq \iota_*\Omega_{\Delta}.$$

Here $\iota:\Delta\hookrightarrow X\times X$ is the embedding of the diagonal. (This may be viewed as a generalization of the definition of the cotangent space at a point via its maximal ideal.)