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1. GAGS Talk 1 – April 26

1.1. “Concrete” examples.

1.1.1. Let X = SpecR be an affine scheme and {Ui → X} a family of morphisms
of affine schemes corresponding to the ring homomorphisms {R → Ri}. Then any
R-module M , thought of as a module over X, determines modules Mi over each Ui
by extension of scalars Mi = Ri ⊗RM .

The modules Mi are “restrictions“ or pullbacks of M along Ui → X, and are
compatible in that if Mi,j is the pullback of Mi over Ui along Ui ×X Uj → Ui,
then we have isomorphisms Mi,j

∼= Mj,i that satisfy certain coherence conditions
that we’ll describe later.

We say that modules over X have the property of descent for the family {Ui →
X} if any family of compatible modules Mi over Ui glues uniquely to a module M
over X that the Mi are restrictions of.

Example 1.1.2. Do modules have descent for a Zariski principal open cover {Ui →
X}, i.e. a family corresponding to prinicpal localizations {R � Rfi} so that 1 ∈
〈fi〉?

Yes: the partition-of-unity argument from a first course on algebraic geometry
shows that modules have descent with respect to Zariski principal open covers.

Example 1.1.3. Do modules have descent for a Zariski cover {U → X} corre-
sponding to not necessarily principal localizations {R� S−1i R}?

Yes, as long as the cover has a finite subcover. The proof is word-for-word the
same as the partition of unity argument for Zariski covers.

This kind of descent is useful, e.g. in studying curves with finitely many singu-
larities. For such a singular curve, this form of descent implies that to specify a
quasi-coherent sheaf on the curve, one need only specify a quasi-coherent sheaf on
the smooth locus, modules over the stalks of the singularities, and isomorphisms
between their restrictions to the generic point(s).

Example 1.1.4. Do modules have descent for a Zariski cover {U → X} corre-
sponding to flat ring homomorphisms {R→ Ri}?

Yes, as long as the cover has a finite subcover.
This kind of descent is the affine scheme version of fpqc-descent; fpqc covers

of schemes are the natural extension of these finite flat covers of affine schemes to
all schemes.

1.1.5. Descent theory is a categorical formalization of the notion of descent. It
relies on the notion of fibrations which we’ll explore in accordance with the following
plan.
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(1) “Concrete” examples
(2) Formalizing restrictions:

• “Pseudofunctors”
Grothendieck construction←−−−−−−−−−−−−−−−→(cloven) fibrations

(3) Formalizing compatibility:
• Representable fibrations
• Sieves (subfibrations of representable fibrations)
• Morphisms of fibrations and th fibrational Yoneda lemma

(4) Stacks and descent conditions:
• Fibrations are analogous to presheaves
• Prestacks are fibrations with uniqueness of gluing descent condition

(analogous to separated presheaves)
• Stacks are fibrations with unique gluing descent condition (analogous

to sheaves)

This development is mostly distilled from Part I of FGA Explained.

1.2. Formalizing restrictions: pseudofunctors, the Grothendieck construc-
tion, fibrations.

Definition 1.2.1. Given a category C, a “pseudofunctor” F associates

(1) To each object X ∈ C a category F(X)

(2) To each morphism X
f−→ Y ∈ C a pullback functor F(X)

f∗←− F(Y ).
(3) For each object X, a natural isomorphism id∗X

∼= idF(X)

(4) To each pair of composable morphisms X
f−→ Y

g−→ Z a natural isomorphism
(g ◦ f)∗ ∼= f∗g∗

satisfying the coherence axioms that the following composites are the same:

• f∗id∗X ∼= f∗idF(X) and f∗id∗X
∼= (idX ◦ f)∗

• id∗Xg
∗ ∼= idF(X)g

∗ and id∗Xg
∗ ∼= (g ◦ idX)∗

• f∗g∗h∗ ∼= f∗(h ◦ g)∗ ∼= (h ◦ g ◦ f)∗ and f∗g∗h∗ ∼= (g ◦ f)∗h∗ ∼= (h ◦ g ◦ f)∗

are the same.

Example 1.2.2. For C the category of affine scheme, we have a “pseudofunctor”
associating to each affine scheme X = SpecR the category of R-modules, and to
each morphism X ′ → X corresponding to a ring homomorphism R → R′, the

extension-of-scalars functors R′-Mod
−⊗RR

′

←−−−−− R-Mod. The natural isomorphisms
between composites of pullback functors are the natural isomorphisms between
itereated tensor products; in particular, their coherence follows from the coherence
of the natural isomorphisms of iterated tensor products.

Remark 1.2.3. “Pseudofunctor” is in quotes because its values can be large cat-
egories (like the category of R-modules), and there is no category of all large
categories unless you adopt a stronger foundation such as Grothendieck universes.
Nevertheless, even without Grothendieck universes, “pseudofunctor” is just as well-
defined a notion as the notion of a large category, but you have to dig into first-order
logic to understand how.

The “pseudo” in “pseudofunctor” refers to the fact that the association of mor-
phisms to pullback functors is only functorial up to an explicit choice of natural
isomorphisms; we would have merely a “functor” in the case where the natural
isomorphisms are all identities.
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Definition 1.2.4 (Grothendieck construction). Given a “pseudofunctor” F , we

construct a category (abusively also labeled F) and a functor C p←− F as follows.

(1) The collection of objects of F is the disjoint union of the collections of

objects of F(X) for each X ∈ C; the functor C p←− F sends an object
A ∈ F(X) to X ∈ C.

(2) A morphism A
α−→ B ∈ F from A ∈ F(X) to B ∈ F(Y ) consists of a pair of

morphisms X
f−→ Y ∈ C and A

a−→ f∗B ∈ F(X); the functor C p←− F sends

a morphism A
(f,a)−−−→ B to X

f−→ Y .

(3) The composite A
(f,a)−−−→ B

(g,b)−−−→ C is given by A
(g◦f,c)−−−−→ C where the

vertical morphism A
c−→ (g ◦ f)∗C is given by the composite A

a−→ f∗B
f∗b−−→

f∗g∗C ∼= (g ◦ f)∗C.

Exercise 1.2.5. Check that the Grothendieck construction does indeed produce a
category. In other words, verify that composition is associative and that the pair

(X
idX−−→ X,A ∼= id∗XA) is an identity morphism for A ∈ F ; you will have to use the

coherence axioms satisfied by the natural isomorphisms of the “pseudofunctor”.

Remark 1.2.6. The vertical fiber p−1(X) of objects mapping to X and morphisms

mapping to X
idX−−→ X is isomorphic to the category F(X). The total category

F associated to a “pseudofunctor” has “vertical” morphisms that are the same
as the values of the “pseudofunctor” and “horizontal” morphisms are the fewest
morphisms that could come from morphisms in C in a sense we make precise below.

Definition 1.2.7. A functor C p←− F is a fibration if for every morphism X
f−→ Y

and every object B ∈ p−1(Y ), there is a morphism A
α−→ B in F such that

(1) α is a lift of X
f−→ Y in the sense that pα = f .

(2) A
α−→ B is p-cartesian in the sense that whenever the projection pA′

pβ−→
pB = Y of a morphism A′

β−→ B factors as pA′
g−→ pA

pα−−→ pB, A′
β−→ B

factors uniquely as A′
γ−→ A

α−→ B with pγ = g.

A cloven fibration is a fibration with a cleavage, that is, a choice of p-cartesian

lifts f∗B → B ∈ F for each pair of a morphism X
f−→ Y ∈ C and an object

B ∈ p−1(Y ).

Remark 1.2.8. As we describe below, the Grothendieck construction produces a
cloven fibration out of a pseudofunctor, and inversely every cleavage of a fibration
determines a “pseudofunctor”. The advantage of fibrations over “pseudofunctors”
is that the structure of natural isomorphisms between pullback functors is auto-
matically induced and kept track of by the universal properties of p-cartesian mor-
phisms. Consequently, the theory of fibrations is simpler to describe and develop
than the corresponding theory of “pseudofunctors”.

Example 1.2.9. Consider the codomain functor C cod←−− C→ be the category whose
objecsts are morphisms A → X ∈ C, and whose morphisms are commutative

squares. A lift of a morphism X
f−→ Y ∈ C along an object Y

b←− B in cod−1(Y )

consists of a pair of morphisms X
a←− A

φ−→ B forming a commutative square with

the pair X
f−→ Y

b←− B.
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This lift will be cod-cartesian if whenever we have a pair of morphisms X ′
a′←−

A′
β−→ A that form a commutative square with X ′

g−→ X
f−→ Y

b←− B, there is a

unique morhism A′
γ−→ A so that A′

β−→ A factors as A′
β−→ A

α−→ B and the square

formed by X ′
a′←− A′ γ−→ A and X ′

g−→ X
a←− A commutes.

In other words, cod-cartesian morphisms are exactly pullback squares.

Exercise 1.2.10. The pullback lemma in basic category theory states that when
two commutative squares are pasted together and the right-hand commutative
square is a pullback square, then the left-hand square is a pullback square if and
only if the whole rectangle is a pullback.

Verify that this is a general propery of p-cartesian morphisms for any functor

C p←− F , i.e. if B
β−→ C is p-cartesian, then A

α−→ B is p-cartesian if and only if the
composite β ◦ α is p-cartesian.

Exercise 1.2.11. The functor C p←− F produced by the Grothendieck construction

is a fibration with clevage given by f∗B
(f,idf∗B)
−−−−−−→ B for any B ∈ p−1(Y ) and

X
f−→ Y .

Reversely, given a morphism X
f−→ Y , a choice of p-cartesian lifts f∗B → B

for each B ∈ p−1(Y ) extends by the universal propery of p-cartesian morphisms

to a pullback functor p−1(X)
f∗←− p−1(Y ). Furthermore, and again by the univer-

sal property of p-cartesian morphisms, a cleavage for a fibration also determines
the requisite coherent natural isomorphisms between composites of the pullback
functors just described.

1.3. Formalizing compatibility: representable fibrations.

Example 1.3.1. Consider the domain functor C dom←−−− C→. Given a morphism

X
f−→ Y and an object Y

b−→ B in dom−1(Y ), a lift is a pair of morphism X
a−→

A
α−→ B so that the together with X

f−→ Y
b−→ B they form a commutative square.

This lift is dom-cartesian if for any pair of morphisms X
a′−→ A′

β−→ B determing

a commutative square with X ′
g−→ X

f−→ Y
b−→ B, there is a unique morphism

A′
γ−→ A through which A′

β−→ B factors as A′
γ−→ A

α−→ B, and such that the square

determined by X ′
a′−→ A′

γ−→ A and X ′
g−→ X

a−→ A commutes.

Evidently, X
b◦f−−→ B

idB−−→ B determines a dom-cartesian lift. In particular,

C dom←−−− C→ is always a fibration, and a pullback functor associated to X
f−→ Y is

the pre-composition functor X/C f∗←− Y/C (where X/C = dom−1(X) is the category
whose objects are morphisms out of X and whose morphisms are commutative
triangles) .

Remark 1.3.2. The particular choice of pre-composition lifts of the domain fibration
is such that the natural isomorphisms of the associated “pseudofunctor” are all iden-
tities. Such a cleavage of a fibration is called a splitting, and the Grothendieck con-
struction actually establishes a correspondence between split fibrations and “func-
tors”.

Definition 1.3.3. For each object X, the functor C dom←−−− C/X is called a rep-
resentable fibration (where C/X is the category whose objects are morphisms
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into X and whose morphisms are commutative triangles). Its standard pullback

functors are also given by pre-composition, meaning that C dom←−−− C/X ↪→ C→ is a

subfibration of C dom←−−− C→.

Remark 1.3.4. A reason for the name “representable fibrations” is that on objects,

the fibration C dom←−−− C/X with its standard splitting determines exactly the “func-
tor” HomC(−, X) (with “functor” in quotes because the category C may be large,
i.e. the values HomC(Y,X)) may be a class rather than a set).


