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1.1. “Concrete” examples.

1.1.1. Let X = Spec R be an affine scheme and {U; — X} a family of morphisms
of affine schemes corresponding to the ring homomorphisms {R — R;}. Then any
R-module M, thought of as a module over X, determines modules M; over each U;
by extension of scalars M; = R®gr M.

The modules M; are “restrictions* or pullbacks of M along U; — X, and are
compatible in that if M; ; is the pullback of M; over U; along U; xx U; — Uj,
then we have isomorphisms M; ; = M;; that satisfy certain coherence conditions
that we’ll describe later.

We say that modules over X have the property of descent for the family {U; —
X} if any family of compatible modules M; over U; glues uniquely to a module M
over X that the M; are restrictions of.

Example 1.1.2. Do modules have descent for a Zariski principal open cover {U; —
X}, ie. a family corresponding to prinicpal localizations {R — Ry, } so that 1 €
()7

Yes: the partition-of-unity argument from a first course on algebraic geometry
shows that modules have descent with respect to Zariski principal open covers.

Example 1.1.3. Do modules have descent for a Zariski cover {U — X} corre-
sponding to not necessarily principal localizations {R — S 1R}?

Yes, as long as the cover has a finite subcover. The proof is word-for-word the
same as the partition of unity argument for Zariski covers.

This kind of descent is useful, e.g. in studying curves with finitely many singu-
larities. For such a singular curve, this form of descent implies that to specify a
quasi-coherent sheaf on the curve, one need only specify a quasi-coherent sheaf on
the smooth locus, modules over the stalks of the singularities, and isomorphisms
between their restrictions to the generic point(s).

Example 1.1.4. Do modules have descent for a Zariski cover {U — X} that
corresponding to flat ring homomorphisms {R — R;}?

Yes, as long as the cover has a finite subcover.

This kind of descent is the affine scheme version of fpgc-descent; fpqc covers
of schemes are the natural extension of these finite flat covers of affine schemes to
all schemes.

1.1.5. Descent theory is a categorical formalization of the notion of descent. It
relies on the notion of fibrations which we’ll explore as follows.
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(1) “Concrete” examples

(2) Formalizing restrictions:
Grothendieck construction (

e “Pseudofunctors” cloven) fibrations
(3) Formalizing compatibility:
e Representable fibrations
e Sieves (subfibrations of representable fibrations)
e Morphisms of fibrations and th fibrational Yoneda lemma
(4) Stacks and descent conditions:
e Fibrations are analogous to presheaves
e Prestacks are fibrations with uniqueness of gluing descent condition
(analogous to separated presheaves)
e Stacks are fibrations with unique gluing descent condition (analogous
to sheaves)

This development is mostly distilled from Part I of FGA Explained.

1.2. Formalizing restrictions: pseudofunctors, the Grothendieck construc-
tion, fibrations.

Definition 1.2.1. Given a category C, a “pseudofunctor” F associates

(1) To each object X € C a category F(X)

(2) To each morphism X 2V € C a pullback functor F(X) <— F(V).
(3) For each object X, a natural isomorphism id’ 2 idr(x)
(4)

4) To each pair of composable morphisms X 1y % 7 anatural isomorphism
(go f)r=fyg
satisfying the coherence axioms that the following composites are the same:
o fridy = f*idr(x) and f*idy = (idx o f)*
o idyg* =idr(x)g* and idyg* = (g oidx)*
o frg"hr = f*(hog)” = (hogo f)* and f*g*h* = (go f)*h* = (hogo f)*
are the same.

Example 1.2.2. For C the category of affine scheme, we have a “pseudofunc-
tor” associating to each affine scheme X = Spec R the category of R-modules,
and to each morphism X’ — X corresponding to a ring homomorphism R — R/,

the extension-of-scalars functors R’ — Mod ﬂ R — Mod. The natural iso-
morphisms between composites of pullback functors are the natural isomorphisms
between itereated tensor products; in particular, their coherence follows from the
coherence of the natural isomorphisms of iterated tensor products.

Remark 1.2.3. “Pseudofunctor” is in quotes because its values can be large cat-
egories (like the category of R-modules), and there is no category of all large
categories unless you adopt a stronger foundation such as Grothendieck universes.
Nevertheless, even without Grothendieck universes, “pseudofunctor” is just as well-
defined a notion as the notion of a large category, but you have to dig into first-order
logic to understand how.

The “pseudo” in “pseudofunctor” refers to the fact that the association of mor-
phisms to pullback functors is only functorial up to an explicit choice of natural
isomorphisms; we would have simply a “functor” in the case where the natural
isomorphisms are all identities.
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Definition 1.2.4 (Grothendieck construction). Given a “pseudofunctor” F, we
construct a category (abusively also labeled F) and a functor C & F as follows.

(1) The collection of objects of F is the disjoint union of the collections of
objects of F(X) for each X € C; the functor C ¢~ F sends an object
Ae F(X)to X eC.

(2) A morphism A % B € F from A € F(X) to B € F(Y) consists of a pair of
morphisms X Lyecandas f*B € F(X); the functor C & F sends

a morphism A (f—a)> Bto X i> Y.

(g,b) M}

(3) The composite A Ua, g Wb, o given by A C' where the

vertical morphism is A % (gof)*C is given by the composite A % f*B EALN
[rgC=(gof)C.

Exercise 1.2.5. Check that the Grothendieck construction does indeed produce
category. In other words, verify that composition is associative and that the pair
(X dx, X, A=id% A) is an identity morphism for A € F; you will have to use the
coherence axioms satisfied by the natural isomorphisms of the “pseudofunctor”.

Remark 1.2.6. The vertical fiber p~1(X) of objects mapping to X and morphisms
mapping to X 1, X s isomorphic to the category F(X). The total category
F associated to a “pseudofunctor” has “vertical” morphisms that are the same as
the values of the “pseudofunctor” and “horizontal” morphisms are in the fewest
morphisms that come from morphisms in C in a sense we make precise below.

Definition 1.2.7. A functor C < F is a fibration if for every morphism X Ly
and every object B € p~'(Y), there is a morphism A %+ B in F such that

(1) ais alift of X L5 ¥ in the sense that pa = f.

(2) A 2, B is p-cartesian in the sense that whenever the projection pA’ LEN
pB =Y of a morphism A’ P, B factors as pA L pA 2 pB, A % B
factors as A’ - A % B with py = g.

A cloven fibration is a fibration with a cleavage, that is, a choice of p-cartesian
lifts f*B — B € F for each pair of morphisms X Ly ¢ and object B € p~1(Y).

Remark 1.2.8. As we describe below, the Grothendieck construction produces a
cloven fibration out of a pseudofunctor, and inversely every cleavage of a fibration
determines a “pseudofunctor”. The advantage of fibrations over “pseudofunctors”
is that the structure of natural isomorphisms between pullback functors is auto-
matically induced and kept track of by the universal properties of p-cartesian mor-
phisms. Consequently, the theory of fibrations is simpler to describe and develop
than the corresponding theory of “pseudofunctors”.

cod

Example 1.2.9. Consider the codomain functor C <— C™ be the category whose
objecsts are morphisms A — X € C, and whose morphisms are commutative

squares. A lift of a morphism X Lyec along an object Y & Bin cod™H(Y)
consists of a pair of morphisms X <~ A % B forming a commutative square with
the pair X Ly d B
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This lift will be cod-cartesian if whenever we have a pair of morphisms X’ <—
A" 2y A that form a commutative square with X’ & X Ly & B, there is a
unique morhism A’ 2 A so that A’ By A factors as A’ 25 A % B and the square

a

formed by X’ <~ A" 5 A and X’ 4 X <~ A commutes.
In other words, cod-cartesian morphisms are exactly pullback squares.

Exercise 1.2.10. The pullback lemma in basic category theory states that when
two commutative squares are pasted together and the right-hand commutative
square is a pullback square, then the left-hand square is a pullback square if and
only if the whole rectangle is a pullback.

Verify that this is a general propery of p-cartesian morphisms for any functor

C& F ie if B LNFoR p-cartesian, then A % B is p-cartesian if and only if the
composite « o 3 is p-cartesian.

Exercise 1.2.11. The functor C <~ F produced by the Grothendieck construction

Ad e
is a fibration with clevage given by f*B M B for any B € p~}(Y) and

xLy.
Reversely, given a morphism X EN Y, a choice of p-cartesian lifts f*B — B
for each A € p~(Y) extends by the universal propery of p-cartesian morphisms

to a pullback functor p=1(X) L p~1(Y). Furthermore, and again by the univer-
sal property of p-cartesian morphisms, a cleavage for a fibration also determines
the requisite coherent natural isomorphisms between composites of the pullback
functors just detscribed.

1.3. Formalizing compatibility: representable fibrations.

Example 1.3.1. Consider the domain functor C M o= Given a morphism

X L v and an object Y 2 Bin dom™(Y), a lift is a pair of morphism X
A2 B so that the together with X Lybp they form a commutative square.

This lift is dom-cartesian if for any pair of morphisms X 2+ A’ LNy determing

a commutative square with X’ % X ENE LN B, there is a unique morphism

A’ 25 A through which A’ 2y B factors as A B A 2 B, and such that the square

/
a

determined by X’ 25 A’ 5 A and X’ % X % A commutes.

Evidently, X Yol g M8, B determines a dom-cartesian lift. In particular,

¢ dm - g always a fibration, and a pullback functor associated to X i) Y is

the pre-composition functor X/C L Y/C (where X/C = dom™*(X) is the category
whose objects are morphisms out of X and whose morphisms are commutative
triangles) .

Remark 1.3.2. The particular choice of pre-composition lifts of the domain fibration
is such that the natural isomorphisms of the associated “pseudofunctor” are all iden-
tities. Such a cleavage of a fibration is called a splitting, and the Grothendieck con-
struction actually establishes a correspondence between split fibrations and “func-
tors”.

Definition 1.3.3. For each object X, the functor C Jom C/X is called a rep-
resentable fibration (where C/X is the category whose objects are morphisms
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into X and whose morphisms are commutative triangles). Its standard pullback

functors are also given by pre-composition, meaning that C dom o /X =< C7isa

subfibration of C fom c—.

Remark 1.3.4. A reason for the name “representable fibrations” is that on objects,
dom

the fibration C +—— C/X with its standard splitting determines exactly the “func-
tor” Home(—, X) (with “functor” in quotes because the category C may be large,
i.e. the values Home(Y, X)) may be a class rather than a set).



