THE COMPACT-OPEN TOPOLOGY: WHAT IS IT REALLY?

VLADIMIR SOTIROV

Recall from algebraic topology:
(1) Path: [0,1] = X
(2) Loop: St — X
(3) Homotopy = path of paths: [0,1] — C([0,1], X), but really [0,1] x [0,1] — X.
(4) Loop of loops = S — C(S*, X), but really a donut: S* x St — X.
Why are these equivalent? For what topology on C(S*, X)? This talk is a streamlined exposition of [EH].

1. Exponential topologies.

Definition.
(1) A topology on C(X,Y) is called:
o weak if Ax X L5V continuous = A L C(X,Y) continuous. Weaker than weak = weak.

e strong if A ER C(X,Y) continuous implies A x X Ly continuous; equivalently if C(X,Y") x
X 2% Y is continuous. Stronger than strong = strong.
e cxponential if both: {A — C(X,Y)} ~ {A x X — Y'}. This is unique because weak is weaker
than strong.
(2) The Sierpinski space S is {0,1} with open {1} C S. The opens sets of X are OX = C(X,S).
(3) Canonical open map Y — S induces C(X,Y) — C(X,S) and thus T on C(X,S) induces weakest
topology so that C'(X,Y) — C(X,S) is continuous: generated by T'(0,V) = {f € C(X,Y): f~1(V) €
O} where O is an open set (of open sets of X) in T, and V is an open set of Y.

Proof of the assertions in (1). To see that a topology is strong if and only if evaluation is continuous, notice
that ev: C(X,Y) — C(X,Y) is the identity map, so is continuous in any topology on C(X,Y’). Thus in a
strong topology on C(X,Y), evaluation is continuous. Conversely, note that for any g: Ax — Y, we have
that g: A — C(X,Y) is given by ev o (g x idx ), which is continuous if ev and g are.

To see that topologies weaker than a weak topology are weak, and ones stronger than a strong topologyy
are strong, notice that that any continuous g: A — C(X,Y) remains continuous if C(X,Y") is made weaker.
For the third claim, if S(X,Y) is a strong topology on C(X,Y’), then from the previous lemma ev: S(X,Y") x
X — Y is continuous. If W(X,Y) is a weak topology on C(X,Y), then by definitionev: S(X,Y) —» W(X,Y)
is continuous. But &V is the identity set-map, hence W (X,Y) is weaker than S(X,Y), as desired. O

Proposition. T on C(X,S) = OX is weak/strong (so exponential) < the induced topology on C(X,Y) is
weak /strong (so exponential) for every Y. Such an X is called exponentiable (exponentiable X are precisely
the topological spaces for which the functor — x X is part of an adjunction — x X - C(X, —)).

Proof. One direction is clear: simply take Y =S so that T'(X,S) = T. For the other direction, we have two
cases: when T is weak and when T is strong.

In the case where T is weak, we are intersted in continuity of g: A — T(X,Y), i.e. in realzing the set
{a€ A:g(a)"1(V) € O C C(X,S)} as an open subset of X for each open V C Y and each open O C C(X,S).
Since g: A x X — Y is continuous, we have that ¢g~1(V) = W — A x X is open, hence corresponds to
a continuous map w: A x X — S with continuous (by weakness of C(X,S)) curry w: A — C(X,S). This
curry has the property that w(a) = g(a)~1(V). The fact that w~'(0) C A is open completes the proof.

In the case where T is strong, it suffices to show exy: C(X,Y) x X — Y is continuous presuming
ex C C(X,S)x X isopen. Taking V C Y an open neighborhood of f(z) = ex y (f), we have (f~1(V),z) € ex
by continuity of f. Since €, is open, there exists an open neighborhood O x U C ¢, of (f~1(V),z), which
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means that (f,z) € T(O,V) x U. All that remains is to show that ex y(T(0,V) x U) C V, but this
follows since for (g,u) € T(O,V) x U means (¢~ (V),u) € O x U, which being contained in €, means that
uwe€ g V), ie exy(g,u) =g(u) € V. O

2. Topologies on C(X,S) = OX.

Proposition. Any topology T on OX gives rise to a “funneled by” relation <p on OX given by U <7 V if
there is an open neighborhood of V' in OX consisting of open sets containing U. Such relations <7 satisfy:

(1) transitive: U <p V <p W implies U <qp W

(2) weaker than C: U <7 V implies U C V

(3) C-downward closed: U’ CU <V implies U' <V

(4) C-finite coproduct closed: § <7 V for any V, and Uy, Us <7 V implies Uy UUs <7 V.

Conversely, {open V C X : U < V'} are basic opens for a topology T with <r==<. The topology on C(X,Y)
induced by a relation < is generated by T(U,V) = {f € C(X,Y): U < f~1(V)}, for U and V in OX. Note
that different topologies can give rise to the same <, but different < give rise to different topologies.

Example.

(1) The Alexandroff topology Ty generated by the relation C. Its open sets are simply upward-closed
subsets of OX, with basic open sets Oy = {open V C X: U C V}. (Notice that reflexivity of <
implies T is stronger than the Alexandroff topology, and C-upward closure of < (U <7 V C W
implies U <7 W) is equivalent to T being weaker thant the Alexandroff topology.)

(2) The topologies T¢ for C C OX whose open sets are Alexandroff opens O such that if C is an open
cover of an element of O, then it has a finite subcover of some element in O. These are obviously
weaker than the Alexandroff topology, and, except for the case C = ), these are different than the
topology generated by the relaton <r,.

(3) The Scott topology whose open sets are Alexandroff opens O such that any open cover of an element in
O has a subcover of an element in O. Clearly, the Scott topology is the intersection of the topologies
Te (so weaker than all of them), and is likewise a priori not the same as the topology generated by
the relation <ry_,,. Significantly, the Scott topology is weak.

(4) The relative compact topology generated by the relation U < V' if and only if any open cover of V' has
a finite subcover of U. This is weaker than the Alexandroff topology, but in general incomparable
to the others.

On the other hand, it is easy to see that <ry_ .. is a weaker relation than < since if O is an
Alexandroff open in Oy containing V' with any cover of an element in O having a finite subcover of
an element in O, then certainly any open cover of V' has a finite subcover of U, i.e. certainly U < V.

Proof that the Scott topology is weak. To show that the Scott topology is weak, take W C A x X an open
set. We wish to show that w: A — C(X,S) is continuous at every point a € A, so fix a € A and a basic
Scott open neigborhood O of w(a) € C(X,S).

Since W C A x X is open, for each € w(a) € X we have an open neighborhood U, x V,, C W of
(a,x). Certainly, w(a) € O is the union of the open neighborhoods V,, hence the union V for some finite
subcollection of those V,; is in O also. We set U to be the intersection of the corresponding finitely many
U, which is an open neighborhood of a. We now want to show that w(U) C O, i.e. that w(u) € O for every
u € U. Since we have V € O, it is sufficient to show that wW(U) € Oy C O, i.e. that V C w(u) for each wu.
But for every v € V, we have (u,v) € U, x V, C W for some x € W(a), so indeed v € w(u). O

Definition. A topology T is approzimating if for any open neighborhood V of z, there is an open neigh-
borhood of U of x so that U <1 V. In particular, every open V is the union of the opens it “funnels”.

Lemma.

o T¢ are all approximating.

e A topology T on C(X,S) is strong if and only if it is approzimating. Hence, the Scott topology is the
strongest weak topology, and X is exponentiable if and only if the Scott topology is approzimating.

o [f < is approximating, and <’ is approximating and upward C-closed (i.e. weaker than the Alexandroff
topology), then for any U <V, there exists W such that U <’ W <X V.



THE COMPACT-OPEN TOPOLOGY: WHAT IS IT REALLY? 3

Proof. The claim that T¢ are approximating is is easy to check as follows. If « ¢ | JC, then C does not cover
V, hence Oy is an open Alexandroff open containing V' so V <7, V. If z € |, then 2 € U for some U € C,
and we easily have that Oy is an open Alexandroff open containing V' so again U <, V.

For the relationship of being approximating to strength, first let us suppose that T is strong, i.e. that
ex € OX x X is open. Then V being an open neighbrohood of x means that (V,z) € ex, hence the latter
point has an open neighborhood O x U C C(X,S) x X. But now W € O implies (W,u) € O x U implies
u € W for every u € W, hence that U C W and so W € Op. Consequently, O is an open subset of Oy and
U <1 V as V is in the interior of Oy .

Conversely, suppose that T is approximating. We wish to show that ex C C(X,S) x X is open. Pick
(V,x) € ex and consider a neighbrhood U of z such that U <y V. Take O C C(X,S) to be an open
neighborhood of V' contained in Oy. Then (V,z) € O x U C ex, as desired.

Note that the relation < being approximating means that any open V is the union of the open W such
that W < V. But furthermore, each open W is the union of open W’ such that W’ <’ W. In particular,
we have an open cover of V' consisting of all those open sets W’ for which the exists an open W such that
W' <" W < V. This cover is evidently closed under finite unions (by the upward and finite coproduct
closure of the relations), hence U < V implies there is a single open W’ that covers U, so we have in total
UCW <'W < V. Since <’ is downward closed, we have U <’ W < V, as desired. O

Theorem. If the Scott topology is approrimating, then < is also approrimating. If < is approxrimating,
then the relative compact topology is weaker than the Scott topology, hence the two coincide and are the
exponential topology.

Proof. For the first claim, taking <’ to be C and applying downward closure of < gives us that U < V
implies U < V, i.e. that < is weaker than any approximating relation. In particular, if the Scott topology
is approximating, then < is also approximating.

For the second claim, if < is approximating, then taking < and <’ to be the approximating < in the
lemma, we obtain that for any U < V there exists a W such that U < W <« V. Consequently, if C is
an open cover of some V in the Alexandroff open {open V C X: U « W}, there is a W in that open of
which C has a finite subcover. This shows that the relatively compact topology is weaker than the Scott
topology. O

Definition. We say that a topological space X is core-compact if the relation < on OX is approximating,
i.e. if any open neighborhood V' of x has an open neighborhood U of x such that U < V, that is, any
open cover of V has a finite subcover of U. Then the core-open topology on C(X,Y) is generated by
TWU,V)={feC(X,Y): U< fY(V)}

3. Compact-open topology.

Proposition. A space X is locally compact if and only if it is core-compact and whenever U < V, there
exists a compact K such that U C K C V. In particular, for a locally compact X the exponential topology
on C(X,Y) is the compact-open topology generated by T(K,V) ={f € C(X,Y): f(K) CV}.

Proof. If X is locally compact, then given a neighborhood an open neighborhood V of x, there is a compact
neighborhood K of z, so with U = int(K) we have U C K C V, which obviously implies U <« V. Further-
more, given U <« V, for each x € V choose a compact neighborhood K, of x contained in V. Then the
int(K,) are an open cover of V, hence they have a finite subcover of U. It follows that the union of those
finitely many K,’s is a compat K such that U C K C V.

Conversely, if X is core-compact and then any open neighborhood of V' of x contains an open neighborhood
U of x such that U <« V. Then the compact K such that U C K C V is by definition a compact neighborhood
of x contained in V', so X is locally compact. O

For the sake of completeness of the exposition, the following is taken from the delightful [GL13], which
in particular contains very pretty diagrams on pages 154-155 that summarize the relationships between the
various topologies on C'(X,Y).

Definition. A sober space X is one in which every irreducible closed subset X is the closure of a singleton.
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Theorem (Hofmann-Mislove, 8.3.2 in [GL13]). Suppose X is a sober space, and U C OX a Scott open
filter, i.e. a Scott open subset (automatically upward closed) which is closed under finite intersections: for
any Uy,Us € U, we have Uy NUy € U. Then Q = [y U is compact and (trivially) saturated (the
intersection of open sets), and U consists of the open neighborhoods of Q.

Proof. As remarked, it is trivial that @ is saturated. Further, to show compactness it suffices to show that
U consists of the open neighborhoods of @ since then any open cover C of () will be a cover of an element in
U, hence will have a finite subcover of an element of U, so a finite subcover of Q.

We proceed to show that there does not exist an open U of @) outside U. Since U is Scott open, the union
of any ascending chain of such opens being in U will imply a finite union of them was in &/. Hence Zorn’s
lemma magnifies the presence of a single open U of ) outside of U/ to a maximal such.

We claim that the complement F' of this maximal U is irreducible. Since U is upward-closed, it contains
X, so U is proper and F' is non-empty. Next, if F' intersects two opens U; and Us, neither of them is in .
Since both U U U; and U U Uy are in U by maximality, we obtain that U U (U; N Us) is also in U, implying
that F' meets U; N Us. But this shows that F' is irreducible.

Since X is assumed sober, F is the closure of a singleton {z}, and so x & @ since it is in the complement
of U, a neighborhood of Q. But by definition of @, this means that x ¢ U’ for some U’ € U, so U’ is disjoint
from F' and is thus in U ¢ U, contradicting the upward closure of U. ]

Corollary (Theorem 8.3.10 in [GL13]). A sober space is exponentiable if and only if it is locally compact.

Proof. Consider a core-compact space X, and take Uy an open neighborhood of a point x. Core-compactness
implies that we can find an open neighborhood of = such that U, < Uy, and then for any U, < U; we
can find an open U;;1 such that U, < U;11 < U;. Thus we obtain U, < -+ K U1 < U; < -+ < Up.
Consequently, we have a Scott-open U of open sets V' such that U,, < V for some n, which is clearly a filter.
When X is sober, we get that K = (,o,, V is a compact set such that U, € K C Uy. Thus, K is a compact
neighborhood of x as desired. O
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