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Recall from algebraic topology:

(1) Path: [0, 1]→ X
(2) Loop: S1 → X
(3) Homotopy = path of paths: [0, 1]→ C([0, 1], X), but really [0, 1]× [0, 1]→ X.
(4) Loop of loops = S1 → C(S1, X), but really a donut: S1 × S1 → X.

Why are these equivalent? For what topology on C(S1, X)? This talk is a streamlined exposition of [EH].

1. Exponential topologies.

Definition.

(1) A topology on C(X,Y ) is called:

• weak if A×X f−→ Y continuous ⇒ A
f−→ C(X,Y ) continuous. Weaker than weak ⇒ weak.

• strong if A
f−→ C(X,Y ) continuous implies A ×X f−→ Y continuous; equivalently if C(X,Y ) ×

X
ev−→ Y is continuous. Stronger than strong ⇒ strong.

• exponential if both: {A → C(X,Y )} ' {A ×X → Y }. This is unique because weak is weaker
than strong.

(2) The Sierpinski space S is {0, 1} with open {1} ⊆ S. The opens sets of X are OX = C(X,S).
(3) Canonical open map Y → S induces C(X,Y ) → C(X,S) and thus T on C(X,S) induces weakest

topology so that C(X,Y )→ C(X,S) is continuous: generated by T (O, V ) = {f ∈ C(X,Y ) : f−1(V ) ∈
O} where O is an open set (of open sets of X) in T , and V is an open set of Y .

Proof of the assertions in (1). To see that a topology is strong if and only if evaluation is continuous, notice
that ev: C(X,Y ) → C(X,Y ) is the identity map, so is continuous in any topology on C(X,Y ). Thus in a
strong topology on C(X,Y ), evaluation is continuous. Conversely, note that for any g : A× → Y , we have
that g : A→ C(X,Y ) is given by ev ◦ (g × idX), which is continuous if ev and g are.

To see that topologies weaker than a weak topology are weak, and ones stronger than a strong topologyy
are strong, notice that that any continuous g : A→ C(X,Y ) remains continuous if C(X,Y ) is made weaker.
For the third claim, if S(X,Y ) is a strong topology on C(X,Y ), then from the previous lemma ev: S(X,Y )×
X → Y is continuous. If W (X,Y ) is a weak topology on C(X,Y ), then by definition ev: S(X,Y )→W (X,Y )
is continuous. But ev is the identity set-map, hence W (X,Y ) is weaker than S(X,Y ), as desired. �

Proposition. T on C(X,S) = OX is weak/strong (so exponential) ⇔ the induced topology on C(X,Y ) is
weak/strong (so exponential) for every Y . Such an X is called exponentiable (exponentiable X are precisely
the topological spaces for which the functor −×X is part of an adjunction −×X ` C(X,−)).

Proof. One direction is clear: simply take Y = S so that T (X,S) = T . For the other direction, we have two
cases: when T is weak and when T is strong.

In the case where T is weak, we are intersted in continuity of g : A → T (X,Y ), i.e. in realzing the set
{a ∈ A : g(a)−1(V ) ∈ O ⊆ C(X,S)} as an open subset of X for each open V ⊆ Y and each open O ⊆ C(X,S).
Since g : A × X → Y is continuous, we have that g−1(V ) = W ↪→ A × X is open, hence corresponds to
a continuous map w : A × X → S with continuous (by weakness of C(X,S)) curry w : A → C(X,S). This
curry has the property that w(a) = g(a)−1(V ). The fact that w−1(O) ⊆ A is open completes the proof.

In the case where T is strong, it suffices to show εX,Y : C(X,Y ) × X → Y is continuous presuming
εX ⊆ C(X,S)×X is open. Taking V ⊆ Y an open neighborhood of f(x) = εX,Y (f), we have (f−1(V ), x) ∈ εX
by continuity of f . Since εx is open, there exists an open neighborhood O × U ⊆ εx of (f−1(V ), x), which

Date: September 25, 2014.

1



THE COMPACT-OPEN TOPOLOGY: WHAT IS IT REALLY? 2

means that (f, x) ∈ T (O, V ) × U . All that remains is to show that εX,Y (T (O, V ) × U) ⊆ V , but this
follows since for (g, u) ∈ T (O, V )× U means (g−1(V ), u) ∈ O × U , which being contained in εx means that
u ∈ g−1(V ), i.e. εX,Y (g, u) = g(u) ∈ V . �

2. Topologies on C(X,S) = OX.

Proposition. Any topology T on OX gives rise to a “funneled by” relation ≺T on OX given by U ≺T V if
there is an open neighborhood of V in OX consisting of open sets containing U . Such relations ≺T satisfy:

(1) transitive: U ≺T V ≺T W implies U ≺T W
(2) weaker than ⊆: U ≺T V implies U ⊆ V
(3) ⊆-downward closed: U ′ ⊆ U ≺ V implies U ′ ≺ V
(4) ⊆-finite coproduct closed: ∅ ≺T V for any V , and U1, U2 ≺T V implies U1 ∪ U2 ≺T V .

Conversely, {open V ⊆ X : U ≺ V } are basic opens for a topology T with ≺T =≺. The topology on C(X,Y )
induced by a relation ≺ is generated by T (U, V ) = {f ∈ C(X,Y ) : U ≺ f−1(V )}, for U and V in OX. Note
that different topologies can give rise to the same ≺T , but different ≺ give rise to different topologies.

Example.

(1) The Alexandroff topology T∅ generated by the relation ⊆. Its open sets are simply upward-closed
subsets of OX, with basic open sets OU = {open V ⊆ X : U ⊆ V }. (Notice that reflexivity of ≺T

implies T is stronger than the Alexandroff topology, and ⊆-upward closure of ≺T (U ≺T V ⊆ W
implies U ≺T W ) is equivalent to T being weaker thant the Alexandroff topology.)

(2) The topologies TC for C ⊆ OX whose open sets are Alexandroff opens O such that if C is an open
cover of an element of O, then it has a finite subcover of some element in O. These are obviously
weaker than the Alexandroff topology, and, except for the case C = ∅, these are different than the
topology generated by the relaton ≺TC .

(3) The Scott topology whose open sets are Alexandroff opens O such that any open cover of an element in
O has a subcover of an element in O. Clearly, the Scott topology is the intersection of the topologies
TC (so weaker than all of them), and is likewise a priori not the same as the topology generated by
the relation ≺TScott

. Significantly, the Scott topology is weak.
(4) The relative compact topology generated by the relation U � V if and only if any open cover of V has

a finite subcover of U . This is weaker than the Alexandroff topology, but in general incomparable
to the others.

On the other hand, it is easy to see that ≺TScott is a weaker relation than � since if O is an
Alexandroff open in OU containing V with any cover of an element in O having a finite subcover of
an element in O, then certainly any open cover of V has a finite subcover of U , i.e. certainly U � V .

Proof that the Scott topology is weak. To show that the Scott topology is weak, take W ⊆ A × X an open
set. We wish to show that w : A → C(X,S) is continuous at every point a ∈ A, so fix a ∈ A and a basic
Scott open neigborhood O of w(a) ∈ C(X,S).

Since W ⊆ A × X is open, for each x ∈ w(a) ⊆ X we have an open neighborhood Ux × Vx ⊆ W of
(a, x). Certainly, w(a) ∈ O is the union of the open neighborhoods Vx, hence the union V for some finite
subcollection of those Vx is in O also. We set U to be the intersection of the corresponding finitely many
Ux, which is an open neighborhood of a. We now want to show that w(U) ⊆ O, i.e. that w(u) ∈ O for every
u ∈ U . Since we have V ∈ O, it is sufficient to show that w(U) ∈ OV ⊆ O, i.e. that V ⊆ w(u) for each u.
But for every v ∈ V , we have (u, v) ∈ Ux × Vx ⊆W for some x ∈ w(a), so indeed v ∈ w(u). �

Definition. A topology T is approximating if for any open neighborhood V of x, there is an open neigh-
borhood of U of x so that U ≺T V . In particular, every open V is the union of the opens it “funnels”.

Lemma.

• TC are all approximating.
• A topology T on C(X,S) is strong if and only if it is approximating. Hence, the Scott topology is the

strongest weak topology, and X is exponentiable if and only if the Scott topology is approximating.
• If � is approximating, and ≺′ is approximating and upward ⊆-closed (i.e. weaker than the Alexandroff

topology), then for any U � V , there exists W such that U �′ W � V .
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Proof. The claim that TC are approximating is is easy to check as follows. If x 6∈
⋃
C, then C does not cover

V , hence OV is an open Alexandroff open containing V so V ≺TC V . If x ∈
⋃
C , then x ∈ U for some U ∈ C,

and we easily have that OU is an open Alexandroff open containing V so again U ≺TC V .
For the relationship of being approximating to strength, first let us suppose that T is strong, i.e. that

εX ⊆ OX ×X is open. Then V being an open neighbrohood of x means that (V, x) ∈ εX , hence the latter
point has an open neighborhood O × U ⊆ C(X,S) ×X. But now W ∈ O implies (W,u) ∈ O × U implies
u ∈W for every u ∈W , hence that U ⊆W and so W ∈ OU . Consequently, O is an open subset of OU and
U ≺T V as V is in the interior of OU .

Conversely, suppose that T is approximating. We wish to show that εX ⊆ C(X,S) × X is open. Pick
(V, x) ∈ εX and consider a neighbrhood U of x such that U ≺T V . Take O ⊆ C(X,S) to be an open
neighborhood of V contained in OU . Then (V, x) ∈ O × U ⊆ εX , as desired.

Note that the relation ≺ being approximating means that any open V is the union of the open W such
that W ≺ V . But furthermore, each open W is the union of open W ′ such that W ′ ≺′ W . In particular,
we have an open cover of V consisting of all those open sets W ′ for which the exists an open W such that
W ′ ≺′ W ≺ V . This cover is evidently closed under finite unions (by the upward and finite coproduct
closure of the relations), hence U � V implies there is a single open W ′ that covers U , so we have in total
U ⊆W ′ ≺′ W ≺ V . Since ≺′ is downward closed, we have U ≺′ W ≺ V , as desired. �

Theorem. If the Scott topology is approximating, then � is also approximating. If � is approximating,
then the relative compact topology is weaker than the Scott topology, hence the two coincide and are the
exponential topology.

Proof. For the first claim, taking ≺′ to be ⊆ and applying downward closure of ≺ gives us that U � V
implies U ≺ V , i.e. that � is weaker than any approximating relation. In particular, if the Scott topology
is approximating, then � is also approximating.

For the second claim, if � is approximating, then taking ≺ and ≺′ to be the approximating � in the
lemma, we obtain that for any U � V there exists a W such that U � W � V . Consequently, if C is
an open cover of some V in the Alexandroff open {open V ⊆ X : U � W}, there is a W in that open of
which C has a finite subcover. This shows that the relatively compact topology is weaker than the Scott
topology. �

Definition. We say that a topological space X is core-compact if the relation � on OX is approximating,
i.e. if any open neighborhood V of x has an open neighborhood U of x such that U � V , that is, any
open cover of V has a finite subcover of U . Then the core-open topology on C(X,Y ) is generated by
T (U, V ) = {f ∈ C(X,Y ) : U � f−1(V )}

3. Compact-open topology.

Proposition. A space X is locally compact if and only if it is core-compact and whenever U � V , there
exists a compact K such that U ⊆ K ⊆ V . In particular, for a locally compact X the exponential topology
on C(X,Y ) is the compact-open topology generated by T (K,V ) = {f ∈ C(X,Y ) : f(K) ⊆ V }.

Proof. If X is locally compact, then given a neighborhood an open neighborhood V of x, there is a compact
neighborhood K of x, so with U = int(K) we have U ⊆ K ⊆ V , which obviously implies U � V . Further-
more, given U � V , for each x ∈ V choose a compact neighborhood Kx of x contained in V . Then the
int(Kx) are an open cover of V , hence they have a finite subcover of U . It follows that the union of those
finitely many Kx’s is a compat K such that U ⊆ K ⊆ V .

Conversely, if X is core-compact and then any open neighborhood of V of x contains an open neighborhood
U of x such that U � V . Then the compact K such that U ⊆ K ⊆ V is by definition a compact neighborhood
of x contained in V , so X is locally compact. �

For the sake of completeness of the exposition, the following is taken from the delightful [GL13], which
in particular contains very pretty diagrams on pages 154-155 that summarize the relationships between the
various topologies on C(X,Y ).

Definition. A sober space X is one in which every irreducible closed subset X is the closure of a singleton.
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Theorem (Hofmann-Mislove, 8.3.2 in [GL13]). Suppose X is a sober space, and U ⊆ OX a Scott open
filter, i.e. a Scott open subset (automatically upward closed) which is closed under finite intersections: for
any U1, U2 ∈ U , we have U1 ∩ U2 ∈ U . Then Q =

⋂
U∈U U is compact and (trivially) saturated (the

intersection of open sets), and U consists of the open neighborhoods of Q.

Proof. As remarked, it is trivial that Q is saturated. Further, to show compactness it suffices to show that
U consists of the open neighborhoods of Q since then any open cover C of Q will be a cover of an element in
U , hence will have a finite subcover of an element of U , so a finite subcover of Q.

We proceed to show that there does not exist an open U of Q outside U . Since U is Scott open, the union
of any ascending chain of such opens being in U will imply a finite union of them was in U . Hence Zorn’s
lemma magnifies the presence of a single open U of Q outside of U to a maximal such.

We claim that the complement F of this maximal U is irreducible. Since U is upward-closed, it contains
X, so U is proper and F is non-empty. Next, if F intersects two opens U1 and U2, neither of them is in U .
Since both U ∪ U1 and U ∪ U2 are in U by maximality, we obtain that U ∪ (U1 ∩ U2) is also in U , implying
that F meets U1 ∩ U2. But this shows that F is irreducible.

Since X is assumed sober, F is the closure of a singleton {x}, and so x 6∈ Q since it is in the complement
of U , a neighborhood of Q. But by definition of Q, this means that x 6∈ U ′ for some U ′ ∈ U , so U ′ is disjoint
from F and is thus in U 6∈ U , contradicting the upward closure of U . �

Corollary (Theorem 8.3.10 in [GL13]). A sober space is exponentiable if and only if it is locally compact.

Proof. Consider a core-compact space X, and take U0 an open neighborhood of a point x. Core-compactness
implies that we can find an open neighborhood of x such that Uω � U0, and then for any Uω � Ui we
can find an open Ui+1 such that Uω � Ui+1 � Ui. Thus we obtain Uω � · · · � Ui+1 � Ui � · · · � U0.
Consequently, we have a Scott-open U of open sets V such that Un � V for some n, which is clearly a filter.
When X is sober, we get that K =

⋂
V ∈U V is a compact set such that Uω ⊆ K ⊆ U0. Thus, K is a compact

neighborhood of x as desired. �
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