THE COMPACT-OPEN TOPOLOGY: WHAT IS IT REALLY?

VLADIMIR SOTIROV

Recall from algebraic topology:

- (1) Path: $[0, 1] \rightarrow X$
- (2) Loop: $S^1 \to X$
- (3) Homotopy = path of paths: $[0,1] \rightarrow C([0,1],X)$, but really $[0,1] \times [0,1] \rightarrow X$.
- (4) Loop of loops = $S^1 \to C(S^1, X)$, but really a donut: $S^1 \times S^1 \to X$.

Why are these equivalent? For what topology on $C(S^1, X)$? This talk is a streamlined exposition of [EH].

1. Exponential topologies.

Definition.

(1) A topology on $C(X, Y)$ is called:

- weak if $A \times X \xrightarrow{f} Y$ continuous $\Rightarrow A \xrightarrow{f} C(X, Y)$ continuous. Weaker than weak \Rightarrow weak.
- strong if $A \stackrel{f}{\to} C(X, Y)$ continuous implies $A \times X \stackrel{f}{\to} Y$ continuous; equivalently if $C(X, Y) \times$ $X \xrightarrow{ev} Y$ is continuous. Stronger than strong \Rightarrow strong.
- exponential if both: $\{A \to C(X,Y)\} \simeq \{A \times X \to Y\}$. This is unique because weak is weaker than strong.
- (2) The Sierpinski space S is $\{0,1\}$ with open $\{1\} \subseteq S$. The opens sets of X are $\mathcal{O}X = C(X, S)$.
- (3) Canonical open map $Y \to \mathbb{S}$ induces $C(X, Y) \to C(X, \mathbb{S})$ and thus T on $C(X, \mathbb{S})$ induces weakest topology so that $C(X,Y) \to C(X,\mathbb{S})$ is continuous: generated by $T(O, V) = \{f \in C(X,Y): f^{-1}(V) \in$ O } where O is an open set (of open sets of X) in T, and V is an open set of Y.

Proof of the assertions in (1). To see that a topology is strong if and only if evaluation is continuous, notice that $\overline{ev}: C(X,Y) \to C(X,Y)$ is the identity map, so is continuous in any topology on $C(X,Y)$. Thus in a strong topology on $C(X, Y)$, evaluation is continuous. Conversely, note that for any $g: A \times \to Y$, we have that \overline{g} : $A \to C(X, Y)$ is given by ev $\circ (\overline{g} \times id_X)$, which is continuous if ev and \overline{g} are.

To see that topologies weaker than a weak topology are weak, and ones stronger than a strong topologyy are strong, notice that that any continuous \overline{g} : $A \to C(X, Y)$ remains continuous if $C(X, Y)$ is made weaker. For the third claim, if $S(X, Y)$ is a strong topology on $C(X, Y)$, then from the previous lemma ev: $S(X, Y) \times$ $X \to Y$ is continuous. If $W(X, Y)$ is a weak topology on $C(X, Y)$, then by definition $\overline{ev}: S(X, Y) \to W(X, Y)$ is continuous. But \overline{ev} is the identity set-map, hence $W(X, Y)$ is weaker than $S(X, Y)$, as desired.

Proposition. T on $C(X, S) = \mathcal{O}X$ is weak/strong (so exponential) \Leftrightarrow the induced topology on $C(X, Y)$ is weak/strong (so exponential) for every Y. Such an X is called *exponentiable* (exponentiable X are precisely the topological spaces for which the functor $-\times X$ is part of an adjunction $-\times X \vdash C(X,-)$.

Proof. One direction is clear: simply take $Y = \mathbb{S}$ so that $T(X, \mathbb{S}) = T$. For the other direction, we have two cases: when T is weak and when T is strong.

In the case where T is weak, we are intersted in continuity of \overline{g} : $A \to T(X, Y)$, i.e. in realzing the set ${a \in A : \overline{g}(a)^{-1}(V) \in O \subseteq C(X, S)}$ as an open subset of X for each open $V \subseteq Y$ and each open $O \subseteq C(X, S)$. Since $g: A \times X \to Y$ is continuous, we have that $g^{-1}(V) = W \hookrightarrow A \times X$ is open, hence corresponds to a continuous map $w: A \times X \to \mathbb{S}$ with continuous (by weakness of $C(X, \mathbb{S})$) curry $\overline{w}: A \to C(X, \mathbb{S})$. This curry has the property that $\overline{w}(a) = \overline{g}(a)^{-1}(V)$. The fact that $\overline{w}^{-1}(O) \subseteq A$ is open completes the proof.

In the case where T is strong, it suffices to show $\epsilon_{X,Y} : C(X,Y) \times X \to Y$ is continuous presuming $\epsilon_X \subseteq C(X, \mathbb{S}) \times X$ is open. Taking $V \subseteq Y$ an open neighborhood of $f(x) = \epsilon_{X,Y}(f)$, we have $(f^{-1}(V), x) \in \epsilon_X$ by continuity of f. Since ϵ_x is open, there exists an open neighborhood $O \times U \subseteq \epsilon_x$ of $(f^{-1}(V), x)$, which

Date: September 25, 2014.

means that $(f, x) \in T(O, V) \times U$. All that remains is to show that $\epsilon_{X,Y}(T(O, V) \times U) \subseteq V$, but this follows since for $(g, u) \in T(O, V) \times U$ means $(g^{-1}(V), u) \in O \times U$, which being contained in ϵ_x means that $u \in g^{-1}(V)$, i.e. $\epsilon_{X,Y}(g, u) = g(u) \in V$. □

2. Topologies on $C(X, \mathbb{S}) = \mathcal{O}X$.

Proposition. Any topology T on OX gives rise to a "funneled by" relation \prec_T on OX given by $U \prec_T V$ if there is an open neighborhood of V in $\mathcal{O}X$ consisting of open sets containing U. Such relations \prec_T satisfy:

- (1) transitive: $U \prec_T V \prec_T W$ implies $U \prec_T W$
- (2) weaker than $\subseteq: U \prec_T V$ implies $U \subseteq V$
- (3) ⊆-downward closed: $U' \subseteq U \prec V$ implies $U' \prec V$
- (4) \subseteq -finite coproduct closed: $\emptyset \prec_T V$ for any V, and $U_1, U_2 \prec_T V$ implies $U_1 \cup U_2 \prec_T V$.

Conversely, {open $V \subseteq X : U \prec V$ } are basic opens for a topology T with $\prec_T = \prec$. The topology on $C(X, Y)$ induced by a relation \prec is generated by $T(U, V) = \{f \in C(X, Y): U \prec f^{-1}(V)\}$, for U and V in $\mathcal{O}X$. Note that different topologies can give rise to the same \prec_T , but different \prec give rise to different topologies.

Example.

- (1) The Alexandroff topology T_{\emptyset} generated by the relation \subseteq . Its open sets are simply upward-closed subsets of $\mathcal{O}X$, with basic open sets $O_U = \{\text{open } V \subseteq X : U \subseteq V\}$. (Notice that reflexivity of \prec_T implies T is stronger than the Alexandroff topology, and ⊆-upward closure of $\prec_T (U \prec_T V \subseteq W)$ implies $U \prec_T W$) is equivalent to T being weaker thant the Alexandroff topology.)
- (2) The topologies T_c for $C \subseteq OX$ whose open sets are Alexandroff opens O such that if C is an open cover of an element of O , then it has a finite subcover of some element in O . These are obviously weaker than the Alexandroff topology, and, except for the case $\mathcal{C} = \emptyset$, these are different than the topology generated by the relaton \prec_{T_c} .
- (3) The Scott topology whose open sets are Alexandroff opens O such that any open cover of an element in O has a subcover of an element in O. Clearly, the Scott topology is the intersection of the topologies $T_{\mathcal{C}}$ (so weaker than all of them), and is likewise a priori not the same as the topology generated by the relation $\prec_{T_{\text{Scott}}}$. Significantly, the Scott topology is weak.
- (4) The relative compact topology generated by the relation $U \ll V$ if and only if any open cover of V has a finite subcover of U. This is weaker than the Alexandroff topology, but in general incomparable to the others.

On the other hand, it is easy to see that $\prec_{T_{\text{Scott}}}$ is a weaker relation than \ll since if O is an Alexandroff open in O_U containing V with any cover of an element in O having a finite subcover of an element in O, then certainly any open cover of V has a finite subcover of U, i.e. certainly $U \ll V$.

Proof that the Scott topology is weak. To show that the Scott topology is weak, take $W \subseteq A \times X$ an open set. We wish to show that $\overline{w}: A \to C(X, \mathbb{S})$ is continuous at every point $a \in A$, so fix $a \in A$ and a basic Scott open neigborhood O of $\overline{w}(a) \in C(X, \mathbb{S})$.

Since $W \subseteq A \times X$ is open, for each $x \in \overline{w}(a) \subseteq X$ we have an open neighborhood $U_x \times V_x \subseteq W$ of (a, x) . Certainly, $\overline{w}(a) \in O$ is the union of the open neighborhoods V_x , hence the union V for some finite subcollection of those V_x is in O also. We set U to be the intersection of the corresponding finitely many U_x , which is an open neighborhood of a. We now want to show that $\overline{w}(U) \subseteq O$, i.e. that $\overline{w}(u) \in O$ for every $u \in U$. Since we have $V \in O$, it is sufficient to show that $\overline{w}(U) \in O_V \subseteq O$, i.e. that $V \subseteq \overline{w}(u)$ for each u. But for every $v \in V$, we have $(u, v) \in U_x \times V_x \subseteq W$ for some $x \in \overline{w}(a)$, so indeed $v \in \overline{w}(u)$.

Definition. A topology T is approximating if for any open neighborhood V of x, there is an open neighborhood of U of x so that $U \prec_T V$. In particular, every open V is the union of the opens it "funnels".

Lemma.

- T_c are all approximating.
- A topology T on $C(X, \mathbb{S})$ is strong if and only if it is approximating. Hence, the Scott topology is the strongest weak topology, and X is exponentiable if and only if the Scott topology is approximating.
- If \preceq is approximating, and \prec' is approximating and upward ⊆-closed (i.e. weaker than the Alexandroff topology), then for any $U \ll V$, there exists W such that $U \preceq' W \preceq V$.

Proof. The claim that T_c are approximating is is easy to check as follows. If $x \notin \bigcup \mathcal{C}$, then $\mathcal C$ does not cover V, hence O_V is an open Alexandroff open containing V so $V \prec_{T_C} V$. If $x \in \bigcup_{\mathcal{C}}$, then $x \in U$ for some $U \in \mathcal{C}$, and we easily have that O_U is an open Alexandroff open containing V so again $U \prec_{T_c} V$.

For the relationship of being approximating to strength, first let us suppose that T is strong, i.e. that $\epsilon_X \subseteq \mathcal{O}X \times X$ is open. Then V being an open neighbrohood of x means that $(V, x) \in \epsilon_X$, hence the latter point has an open neighborhood $O \times U \subseteq C(X, \mathbb{S}) \times X$. But now $W \in O$ implies $(W, u) \in O \times U$ implies $u \in W$ for every $u \in W$, hence that $U \subseteq W$ and so $W \in O_U$. Consequently, O is an open subset of O_U and $U \prec_T V$ as V is in the interior of O_U .

Conversely, suppose that T is approximating. We wish to show that $\epsilon_X \subseteq C(X, \mathbb{S}) \times X$ is open. Pick $(V, x) \in \epsilon_X$ and consider a neighbrhood U of x such that $U \prec_T V$. Take $O \subseteq C(X, \mathbb{S})$ to be an open neighborhood of V contained in O_U . Then $(V, x) \in O \times U \subseteq \epsilon_X$, as desired.

Note that the relation \prec being approximating means that any open V is the union of the open W such that $W \prec V$. But furthermore, each open W is the union of open W' such that $W' \prec' W$. In particular, we have an open cover of V consisting of all those open sets W' for which the exists an open W such that $W' \prec' W \prec V$. This cover is evidently closed under finite unions (by the upward and finite coproduct closure of the relations), hence $U \ll V$ implies there is a single open W' that covers U, so we have in total $U \subseteq W' \prec' W \prec V$. Since \prec' is downward closed, we have $U \prec' W \prec V$, as desired.

Theorem. If the Scott topology is approximating, then \ll is also approximating. If \ll is approximating, then the relative compact topology is weaker than the Scott topology, hence the two coincide and are the exponential topology.

Proof. For the first claim, taking \prec' to be ⊆ and applying downward closure of \prec gives us that $U \ll V$ implies $U \prec V$, i.e. that \ll is weaker than any approximating relation. In particular, if the Scott topology is approximating, then \ll is also approximating.

For the second claim, if \ll is approximating, then taking \prec and \prec' to be the approximating \ll in the lemma, we obtain that for any $U \ll V$ there exists a W such that $U \ll W \ll V$. Consequently, if C is an open cover of some V in the Alexandroff open {open $V \subseteq X : U \ll W$ }, there is a W in that open of which C has a finite subcover. This shows that the relatively compact topology is weaker than the Scott topology. \Box

Definition. We say that a topological space X is *core-compact* if the relation \ll on OX is approximating, i.e. if any open neighborhood V of x has an open neighborhood U of x such that $U \ll V$, that is, any open cover of V has a finite subcover of U. Then the *core-open* topology on $C(X, Y)$ is generated by $T(U, V) = \{ f \in C(X, Y) : U \ll f^{-1}(V) \}$

3. Compact-open topology.

Proposition. A space X is locally compact if and only if it is core-compact and whenever $U \ll V$, there exists a compact K such that $U \subseteq K \subseteq V$. In particular, for a locally compact X the exponential topology on $C(X, Y)$ is the compact-open topology generated by $T(K, V) = \{f \in C(X, Y) : f(K) \subseteq V\}.$

Proof. If X is locally compact, then given a neighborhood an open neighborhood V of x , there is a compact neighborhood K of x, so with $U = \text{int}(K)$ we have $U \subseteq K \subseteq V$, which obviously implies $U \ll V$. Furthermore, given $U \ll V$, for each $x \in V$ choose a compact neighborhood K_x of x contained in V. Then the $\text{int}(K_x)$ are an open cover of V, hence they have a finite subcover of U. It follows that the union of those finitely many K_x 's is a compat K such that $U \subseteq K \subseteq V$.

Conversely, if X is core-compact and then any open neighborhood of V of x contains an open neighborhood U of x such that $U \ll V$. Then the compact K such that $U \subseteq K \subseteq V$ is by definition a compact neighborhood of x contained in V, so X is locally compact.

For the sake of completeness of the exposition, the following is taken from the delightful [GL13], which in particular contains very pretty diagrams on pages 154-155 that summarize the relationships between the various topologies on $C(X, Y)$.

Definition. A *sober space* X is one in which every irreducible closed subset X is the closure of a singleton.

Theorem (Hofmann-Mislove, 8.3.2 in [GL13]). Suppose X is a sober space, and $U \subseteq OX$ a Scott open filter, i.e. a Scott open subset (automatically upward closed) which is closed under finite intersections: for any $U_1, U_2 \in \mathcal{U}$, we have $U_1 \cap U_2 \in \mathcal{U}$. Then $Q = \bigcap_{U \in \mathcal{U}} U$ is compact and (trivially) saturated (the intersection of open sets), and U consists of the open neighborhoods of Q .

Proof. As remarked, it is trivial that Q is saturated. Further, to show compactness it suffices to show that U consists of the open neighborhoods of Q since then any open cover C of Q will be a cover of an element in U, hence will have a finite subcover of an element of U , so a finite subcover of Q .

We proceed to show that there does not exist an open U of Q outside \mathcal{U} . Since U is Scott open, the union of any ascending chain of such opens being in $\mathcal U$ will imply a finite union of them was in $\mathcal U$. Hence Zorn's lemma magnifies the presence of a single open U of Q outside of U to a maximal such.

We claim that the complement F of this maximal U is irreducible. Since U is upward-closed, it contains X, so U is proper and F is non-empty. Next, if F intersects two opens U_1 and U_2 , neither of them is in U. Since both $U \cup U_1$ and $U \cup U_2$ are in U by maximality, we obtain that $U \cup (U_1 \cap U_2)$ is also in U, implying that F meets $U_1 \cap U_2$. But this shows that F is irreducible.

Since X is assumed sober, F is the closure of a singleton $\{x\}$, and so $x \notin Q$ since it is in the complement of U, a neighborhood of Q. But by definition of Q, this means that $x \notin U'$ for some $U' \in \mathcal{U}$, so U' is disjoint from F and is thus in $U \notin \mathcal{U}$, contradicting the upward closure of \mathcal{U} .

Corollary (Theorem 8.3.10 in [GL13]). A sober space is exponentiable if and only if it is locally compact.

Proof. Consider a core-compact space X, and take U_0 an open neighborhood of a point x. Core-compactness implies that we can find an open neighborhood of x such that $U_{\omega} \ll U_0$, and then for any $U_{\omega} \ll U_i$ we can find an open U_{i+1} such that $U_{\omega} \ll U_{i+1} \ll U_i$. Thus we obtain $U_{\omega} \ll \cdots \ll U_{i+1} \ll U_i \ll \cdots \ll U_0$. Consequently, we have a Scott-open $\mathcal U$ of open sets V such that $U_n \ll V$ for some n, which is clearly a filter. When X is sober, we get that $K = \bigcap_{V \in \mathcal{U}} V$ is a compact set such that $U_\omega \subseteq K \subseteq U_0$. Thus, K is a compact neighborhood of x as desired.

REFERENCES

[[]EH] Martín Escardó and Reinhold Heckmann. Topologies on spaces of continuous functions. In Topology Proc, pages 545–564. [GL13] Jean Goubault-Larrecq. Non-Hausdorff Topology and Domain Theory: Selected Topics in Point-Set Topology, volume 22. Cambridge University Press, 2013.