EIGHTH ANNUAL UW MADISON UNDERGRADUATE MATH COMPETITION

1. Compute

$$\int_0^{\pi/2} \sin^2(\sin(t)) + \cos^2(\cos(t)) dt.$$

2. Find all real polynomials p(t) such that

$$p(u^2 - v^2 + 1) = p(u + v + 1) \cdot p(u - v + 1)$$

for all $u, v \in \mathbb{R}$.

3. Let p be a prime number. Fermat's Little Theorem states that every invertible $a \in (\mathbb{Z}/p\mathbb{Z})$ satisfies

$$a^{p-1} = 1$$
.

In fact, p-1 is the minimal power that works.

(a) Show that in this form, the theorem fails for matrices, and even for 2×2 -matrices: there is an invertible 2×2 matrix A with entries in $\mathbb{Z}/p\mathbb{Z}$ such that

$$A^{p-1} \neq I$$
.

(b) Find the minimal positive exponent N > 0 such that

$$A^N = I$$

for any A as in part (a). (For partial credit, find some N > 0 that works.)

4. Show that π can be obtained as the limit of a sequence of numbers of the form

$$\sqrt{x^2 + y^4} - z,$$

where x, y, and z are all integers.

5. Let P(x) be a non-constant polynomial with integer coefficients. Show that there exists an integer N such that the numbers

$$|P(N)|, |P(N+1)|, \dots, |P(N+2024)|$$

are all composite. (By convention, 0 and 1 are not considered composite.)

6. Let \mathcal{C} be a circle of radius 1. Let us inscribe a random triangle in \mathcal{C} by choosing, randomly and independently, three points on \mathcal{C} . (Each point is uniformly distributed on \mathcal{C} .) What is the expected value of the area of the triangle?