UW MADISON UNDERGRADUATE MATH COMPETITION

- 1. Fix $n \ge 3$. Start with a (planar convex) polygon with n sides, and draw all of its diagonals. What is the largest possible number of intersection points of the diagonals? (Count only inner intersection points, for example, if n = 5, there will be five intersections.)
- **2.** f(x) is a strictly positive, continuous function on the interval $2 \le x \le 4$. Compute

$$\int_{2}^{4} \frac{f(x)}{xf(x) + xf(\frac{8}{x})} dx.$$

3. P_1, \ldots, P_{10} are ten points on the unit circle $x^2 + y^2 = 1$. What is the largest possible value of the quantity

$$\sum_{1 \le i < j \le 10} |P_i P_j|^2$$

(the sum of squares of pairwise distances between the points)?

4. Show that the equation

$$x^n + x = 1$$

has exactly one real solution in [0,1]. Denote it by x_n . Show that

$$\lim_{n \to \infty} n(1 - x_n) = \infty.$$

5. (a) Written in binary, 2015 looks like

Find the smallest exponent n > 0 (if it exists) such that 2015^n ends in

(ten ones) when written in binary.

(b) Written in binary, 2017 looks like

Find the smallest exponent n > 0 (if it exists) such that 2017^n ends in

(ten zeros and one) when written in binary.

6. A is a square $n \times n$ matrix with integer entries. You are told that A is invertible; moreover, all entries of the inverse matrix A^{-1} are integers

Date: April 22, 2015.

- as well. Prove that the matrix A + 10I has an inverse (however, it is not claimed that its entries are integers). Here I is the identity matrix.
- 7. A unit segment [0,1] is colored randomly using two colors, white and black, according to the following procedure. The segment starts white. On each step, we choose two random points a and b on the segment and switch the color of each point between them. (The points a and b are uniformly distributed on [0,1]). We repeat this procedure n times, choosing two independent points on each step.
- (a) What is the probability that the midpoint 1/2 of the segment [0,1] is black after n steps? (n is arbitrary)
 - (b) What is the expected total length of the black region after n steps?