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1. History and Overview

1.1. History of comparison geometry and sphere theorems. This course focuses on

a central topic in Riemannian geometry which describes the relations between curvature and

topology of the underlying space. We also emphasize advanced tools from metric geometry

which regards a Riemannian manifold as a metric space and investigates global behaviors

and geometric effects of geodesics in various senses.

Topology of manifold
kkkk

++ ++

oo
geodesics

// Metric geometry
OO

Holonomy, ∇2r and ∆r, Jacobi equation, etc.
��

Curvature behaviors

It is worth briefly mentioning the development of differential geometry in the history of

mathematics. Differential geometry started with Gauß’ famous work “Disquisitiones Gen-

erales Circa Superficies Curvas” (1827) which provides rigorous discussions of what we now

call the Gauß curvature of a surface. The Gauß-Bonnet Theorem is probably the deepest

theorem in differential geometry of surfaces.

Theorem 1.1 (Gauß-Bonnet). There are two versions.

(1) (Local version) Let T be a geodesic triangle in a surface Σ with three interior angles

φ1, φ2, and φ3. Then

3∑
j=1

φi − π =

ˆ

T

Kdσ. (1.1)

(2) (Global version) Let Σ be a closed surface. Thenˆ
Σ

Kdσ = 2πχ(Σ). (1.2)

The rigorous form of Gauß-Bonnet theorem was first found in Wilhelm Blaschke’s famous

book “Vorlesungen über Differentialgeometrie” (1921).

The next essential step in the development of differential geometry is Riemannian’s famous

Habilitation “Über die Hypothesen, welche der Geometrie zu Grunde liegen”(10th June, 1854)

which represents the birth of Riemannian geometry. In this lecture, the intrinsic notions of

what we call Riemann curvature tensor and sectional curvature nowadays were rigorously

defined.

Definition 1.1 (Curvatures). Let (Mn, g) be a Riemannian manifold and let ∇ be its Levi-

Civita connection. Then the Riemann curvature is defined to be

Rm(X, Y )Z ≡ ∇2
X,YZ −∇2

Y,XZ, X, Y, Z ∈ X(Mn). (1.3)
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Let X, Y ∈ TpM
n two linearly independent tangent vectors. Then we define

secg(X, Y ) ≡ ⟨Rm(X, Y )Y,X⟩
∥X∥2∥Y ∥2 − ⟨X, Y ⟩2

(1.4)

as the sectional curvature for the plane Πp ≡ Span(X, Y ) ⊂ TpM
n.

Now for any p ∈ Mn, let us take an orthonormal basis {E1, . . . , En} of TpM
n. Then we

define

Ric(X, Y ) ≡

〈
n∑
i=1

Rm(Ei, X)Y,Ei

〉
(1.5)

as the Ricci tensor at p.

In this course, we are interested in the manifolds with sectional or Ricci curvature uni-

formly bounded from below. In the comparison geometry of sectional curvature, the most

powerful tool is Toponogov’s triangle comparison theorem which is fundamentally important

in the development of the field.

Theorem 1.2 (Toponogov). Let (Mn, g) be complete and secg ≥ κ. Let p, q−, q+ ∈ Mn be

three distinct points such that

dg(q−, q+) ≤ min
{
dg(p, q−) + dg(p, q+), π/

√
κ
}
. (1.6)

Then there exists three distinct points p̄, q̄−, q̄+ ∈ (M2
κ , d̄) such that

d̄(p̄, q̄−) = dg(p, q−), d̄(p̄, q̄+) = dg(p, q+), d̄(q̄−, q̄+) = dg(q−, q+), (1.7)

and

dg(p, γq−q+(t)) ≥ d̄(p̄, γ̄q̄−q̄+(t)), ∀t ∈ [0, dg(q−, q+)], (1.8)

where γq−q+ is a minimizing connecting q− and q+, and γ̄q̄−q̄+ is a minimizing geodesic con-

necting q̄− and q̄+.

The study of such spaces started from formulations of Sphere Theorems with marvelous

applications of comparison theorems due to Rauch in 1950s. Sphere is the simplest closed

manifold. A fundamental problem is to ask how to use curvature condition to characterize

a sphere, i.e., proving topological or geometric rigidity of sphere.

In general, under certain curvature condition K , a rigidity theorem associated with a

geometric quantity Q(Mn) looks like

K =⇒ Q(Mn) ≤ Q0 with Q(Mn) = Q0 ⇐⇒Mn ≡ M , (1.9)

where M is some model space. A further question in global Riemannian geometry is whether

the quantity Q is promising to classify all manifolds that satisfy the curvature condition K .

In other words, what can we say when the quantity Q(Mn) fails to be maximal. More

concretely, one wants to find out how continuous change of those “bounded” geometric
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affects the geometric shape or global topology of the underlying space, such as stability

problem, almost rigidity problem. The formulation of geometric/topological stability is given

as follows: under the curvature condition K ,

Q(Mn) ≥ Q0 − ϵ =⇒Mn ≈ M . (1.10)

A similar problem, called quantitative rigidity, reveals more geometric information: find a

suitable “distance”

Dist : M(K )×M(K ) → [0,∞) (1.11)

between manifolds that satisfy K such taht

Q(Mn) ≥ Q0 − ϵ =⇒ Dist(Mn,M ) ≤ τ(ϵ), lim
ϵ→0

τ(ϵ) = 0. (1.12)

Further, one is interested in whether Dist(Mn,M ) < ϵ implies certain topological closeness.

One of Rauch’s contributions in differential geometry is the following sphere theorem.

Theorem 1.3 (Rauch 1951). Given n ≥ 2, there exists a dimensional constant ϵ = ϵn > 0

such that if a Riemannian manifold (Mn, g) satisfies π1(M
n) = {e} and 1 − ϵ ≤ secg ≤ 1,

then Mn is homeomorphic to a sphere.

Another sphere theorem that inspired the developments of global Riemannian geometry

is the Quarter Pinching Sphere Theorem.

Theorem 1.4 (Klingenberg and Berger, 1960). If a simply connected Riemannian manifold

(Mn, g) satisfies 1/4 < secg ≤ 1, then Mn is homeomorphic to a sphere. If Mn satisfies

1/4 ≤ secg ≤ 1, then Mn is either homeomorphic to a sphere or isometric to a symmetric

space of compact type.

Remark 1.1. Brendle-Schoen and Lei Ni upgraded homeomorphism to diffeomorphism.

Theorem 1.5. Let (Mn, g) be complete and Ricg ≥ n− 1. Then

(1) (Bonnet-Myers) diamg(M
n) ≤ π; (S.Y. Cheng 1975) equality holds iff Mn is isomet-

ric to Sn.
(2) (Bishop) Volg(M

n) ≤ Volg(Sn) and equality holds iff Mn is isometric to Sn.

The following Diameter Sphere Theorem proves topological rigidity of manifolds with

positive sectional curvature and large diameter.

Theorem 1.6 (Grove-Shiohama 1977). Let (Mn, g) satisfy secg ≥ 1 and diamg(M
n) > π

2
.

Then Mn is homeomorphic to a sphere.

Remark 1.2. M. Anderson (1990) constructed metrics on CP 2 and CP 2#CP 2 with positive

Ricci curvature and almost maximal diameter. In the case of secg ≥ 1, the lower bound π
2
is

optimal since RP n satisfies secg = 1 and diamg(RP n) = π
2
, and the Fubini-Study metric one

CP 2 satisfies secgFS
≥ 1 and diamgFS

(CP 2) = π
2
.
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1.2. Spaces of Riemannian manifolds. In 1970, Cheeger proved aDiffeomorphism Finite-

ness Theorem which gives another flavor of statements other than sphere theorems and

provides entirely new geometric point of view to be further established.

Theorem 1.7 (Cheeger 1970). Given n ≥ 2, Λ > 0, D > 0 and v > 0, there exists a

uniform constant N = N(n,Λ, D, v) > 0 such that the class

M(n,Λ, D, v) ≡ {(Mn, g) : | secg | ≤ Λ, diamg(M
n) ≤ D, Volg(M

n) ≥ v} (1.13)

has finitely many diffeomorphism types and this number is at most N .

Theorem 1.8 (Stability). Given a closed manifold (Nn, h), there exists δ = δ(n,Nn) > 0

such that if (Mn, g) satisfies

distC1(Mn, Nn) < δ, (1.14)

then Mn is diffeomorphic to Nn.

Later in 1970s, Gromov created numerous new concepts and tools with further develop-

ments of comparison geometry, by which he proved many profound theorems such as Almost

Flat Manifold Theorem and Betti Numbers Estimates Theorem. Cheeger and Gromov’s the-

orems became the turning point of the development of Riemannian geometry. Based on such

tremendous results, global Riemannian geometry become a very active and rapidly growing

area in 1980s. Especially Gromov’s Hausdorff convergence theory and Cheeger-Gromov’s

theory of collapsing Riemannian manifolds changed the shape of Riemannian geometry.

1.3. Non-collapsing geometry of the Ricci curvature. Since 1990s, emphasis of Rie-

mannian geometry moved to studying the geometry of Ricci curvature, including the geom-

etry and moduli space of Einstein metrics, Ricci flow, Hausdorff convergence under Ricci

curvature bounds, etc.

Let us denote

M+
Ric(n, κ) ≡ {isometry class of (Mn, g) : Ricg ≥ κ} ,

Met ≡ {all metric spaces} .
(1.15)

Theorem 1.9 (Gromov’s Precompactness Theorem 1980). M+
Ric(n, κ) is precompact in

(Met, dGH).

By Gromov’s Precompactness Theorem, for any sequence with Ricci curvature uniformly

bounded below, one can always find a subsequence that converges to a metric space. For

example, Gromov-Hausdorff limits of Einstein manifolds can be regarded as weak solutions

of the Einstein equation. These geometric objects play the roles that distribution theory

plays in analysis.

A fundamental problem asks how far the limit metric space differs from a smooth manifold,

and what kind of singularities may appear.
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Theorem 1.10. Let (Mn
j , gj)

GH−−→ (Xn
∞, d∞) be a non-collapsing sequence.

(1) (Anderson, Greene-Wu) If |Rmgj | ≤ 1, then Xn
∞ is a smooth manifold and passing

to a subsequence (Mn
j , gj)

C1,α

−−→ (Xn
∞, d∞) for any α ∈ (0, 1).

(2) (Bando-Kasue-Nakajima) If |Ricgj | ≤ n − 1 and
´
M4

j
|Rmgj |

n
2 ≤ Λ, then Xn

∞ is

smooth away from finite orbifold singularities of number ≤ Q = Q(Λ, n).

Bando-Kasue-Nakajima’s regularity result for bounded Ricci curvature in the case of n = 4

is particularly interesting since the integral curvature bound is related the of Euler charac-

teristic of the underlying space. Indeed, Chern-Gauß-Bonnet Theorem in dimension 4 can

be written as

χ(M4) =

ˆ
M4

Pχ, (1.16)

where

Pχ =
1

8π2
(|Rmg |2 − 4|Ricg |2 + | Scalg |2). (1.17)

In the Einstein case, one has

χ(M4) =
1

8π2

ˆ
M4

|Rmg |2, (1.18)

It is worth mentioning that the above regularity theorem plays a fundamental role in the

existence problem of Kähler-Einstein metrics on Fano surfaces. Since then, more investiga-

tions on the limit structure of spaces with Ricci curvature bounds appeared in the literature,

which became a central and difficult topic in Riemannian geometry.

In the case of non-collapsing Riemannian manifolds, tremendous progress was made due

to Cheeger-Colding’s series of works.

Theorem 1.11 (Cheeger-Colding 1996). Given a smooth manifold (Nn, h) and any number

κ ∈ R, there exists δ = δ(n,Nn, κ) > 0 such that if (Mn, g) satisfies Ricg ≥ κg and

dGH(M
n, Nn) < δ, then Mn is diffeomorphic to Nn.

Theorem 1.12 (Cheeger-Colding 1996). For any n ≥ 2 and ϵ > 0, there exists δ = δ(n, ϵ) >

0 such that if (Mn, g) satisfies Ricg ≥ n − 1 and Volg(M
n) ≥ Vol(Sn) − δ, then Mn is

diffeomorphic to Sn.

Theorem 1.13 (Cheeger-Colding 1997). Let (Mn
j , gj) be a sequence of Riemannian mani-

folds such that |Ricgj | ≤ n − 1 and Volgj(B1(xj)) ≥ v0 > 0. Then (Mj, gj)
GH−−→ (Xn

∞, d∞)

such that

(1) there exists a closed subset S ⊂ Xn
∞ with dimH(S) ≤ n− 2;

(2) Xn
∞ \ S is a smooth manifold with a C1,α-Riemannian metric.
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For non-collapsing manifolds with Ricci curvature uniformly bounded below, a crucial

technical tool is Cheeger-Colding’s Metric Cone Structure Theorem. It essentially states

that

Theorem 1.14 (Cheeger-Colding 1996). For any n ≥ 2, v > 0, and ϵ > 0, there exists

Q = Q(n, v, ϵ) > 0 such that the following holds. If (Mn, g, p) satisfies Ricg ≥ κ and

Volg(B1(p)) ≥ v > 0, then for any x ∈ B2(p), there exists a metric space (Z, dC , z) which is

dilation invariant at z, i.e., a metric cone such that

dGH(Br(p), Br(z)) < ϵr (1.19)

for all but finitely many bad scales rj ≡ 2−j with j ≤ Q.

Theorem 1.15 (Cheeger 2002). Let (Mn
j , gj, pj) be a sequence satisfying Ricgj ≥ −(n− 1),

Volgj(B1(pj)) ≥ v > 0, and

ˆ
B2(pj)

|Rmgj |p ≤ Λ, (1.20)

such that (Mn
j , gj)

GH−−→ (Xn
∞, d∞). Then dimH(S) ≤ n − 2p. In particular, in the Kähler

case, dimH(S) ≤ n− 4.

The next groundbreaking result is Cheeger-Naber’s resolution of the Codimension-4 Con-

jecture for non-collapsing Einstein manifolds, which we will introduce in later lectures.

1.4. Collapsing manifolds with bounded sectional curvature. As we mentioned, the

compactness and regularity results for non-collapsing Einstein manifolds are substantial tech-

niques in studying the existence problem of Kähler-Einstein metrics. Compared with the

rather complete theory established in the volume non-collapsing context, general theory is

not available and very rare results have been known in the collapsed setting. However,

such a theory is being demanded in many different subjects of geometry and physics. It is

worth mentioning collapsing theory provided an important tool in completing the Perel’man’s

proof of Thurston’s Geometrization Conjecture. Indeed, the last step of the proof is due to

Perel’man’s Collapsing Theorem for 3-manifolds.

Now we summarize substantial developments in the collapsing geometry of spaces with sec-

tional curvature bounds. Let us consider a basic scenario in which a sequence of Riemannian

manifolds (Mn
j , gj) collapsing to a lower dimensional metric space (Mn

j , gj)
GH−−→ (X∞, d∞)

with sectional curvature uniformly bounded | secgj | ≤ 1. A primary task is to characterize

the following extremal case. The maximally collapsed case happens when the limit space is a

single point. This amounts to saying (Mn
j , gj) satisfies | secgj | ≤ 1 and diamgj(M

n
j ) → 0. In

a more scale-invariant version, we make the following notion. A closed Riemannian manifold
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is called ϵ-almost-flat if

diamgj(M
n
j )

2 ·max
Mn

j

| secgj | → 0. (1.21)

Before discussing the structure of almost flat manifolds, we first introduce the Biberbach

Theorem which characterizes the Riemannian geometry of flat manifolds.

Theorem 1.16 (Bieberbach, 1911). Any cocompact lattice Γ ⊂ Isom(Rn) must be a finite

extension of Zn, i.e., Γ satisfies the following exact sequence

1 −→ Zn −→ Γ −→ H → 1. (1.22)

Here H = Γ/Zn is called the holonomy group and satisfies |H| ≤ C(n). Equivalently, every

closed flat manifold Mn is finitely covered by Tn.

A groundbreaking result in collapsing theory is Gromov’s Almost Flat Manifold Theorem

which can be regarded as a profound generalization of the classical Bieberbach’s Theorem.

Theorem 1.17 (Gromov 1978). For any n ≥ 2, there exist constants ϵ = ϵ(n) > 0 and

w = w(n) such that if (Mn, g) satisfies

diamg(M
n
j )

2 ·max
Mn

| secgj | ≤ ϵ, (1.23)

then there exists a finite normal covering space M̂n, of index bounded by w(n), which is

diffeomorphic to a nilmanifold.

Remark 1.3. M̂n admits an iterated nilpotent fibration structure over a tori.

Based on Gromov’s characterization of almost flat manifolds, further studies of collapsing

spaces became possible.

Theorem 1.18 (Fukaya 1987 and 1989). Let (Mn
j , gj)

GH−−→ (Xk
∞, d∞) satisfy k < n and

| secgj | ≤ 1.

(1) If Xk
∞ is a smooth, then there exists a fiber bundle map Nn−k → Mn

j → Xk
∞ such

that Nn−k is finitely covered by a nilmanifold.

(2) In general, one has the following equivariant convergence diagram:

N̂

��

// (F (Mj), O(n))

πj

��

eqGH
// (Y∞, O(n))

π∞

��
N // (Mn

j , gj)
GH // (X∞, d∞)

and there exists a singular fibration N → Mj → X∞ with N as its generic fiber,

where Y∞ is smooth, N̂ is a nilmanifold, and N is finitely covered by a nilmanifold.
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Theorem 1.19 (Cheeger-Fukaya-Gromov 1992). Let (Mn, g) be a complete Riemannian

manifold. Then there exist 0 < ϵ(n) < 1 and Q = Q(n) such that Mn admits a thick-thin

decomposition Mn =M thick(ϵ) ∪M thin(ϵ) which satisfies the following properties:

(1) injrad(x) ≥ ϵ > 0 for all x ∈ M thick(ϵ). Therefore, B1(x) has finitely many diffeo-

morphism types of number bounded by Q, for any x ∈M thick(ϵ).

(2) M thin(ϵ) has a locally finite covering M thin(ϵ) ⊂
⋃
α∈Λ

Uα and for every α ∈ Λ, there

exists a singular fibration Nα → Uα → Xα. If Uα ∩ Uβ ̸= ∅ and dim(Uα) > dim(Uβ),
then Uα is nilpotent fiber bundle with fiber Uβ. Moreover, g is almost invariant in the

following sense: there exists a smooth metric gϵ such that

|∇k(g − gϵ)|C0(Mthin(ϵ)) < ϵ (1.24)

and gϵ is Nα-invariant for each α ∈ Λ.

Theorem 1.20 (Shioya-Yamaguchi 2001 and 2005). There exists an absolute constant ϵ > 0

such that if (M3, g) satisfies secg ≥ −1 and Volg(B1(x)) < v, then M3 is diffeomorphic to a

graph manifold.
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2. Basic Comparison Geometry

The section is a crash course on basic comparison geometry of sectional and Ricci curva-

ture. As applications, we will also prove some rigidity theorems.

2.1. Exponential map and comparison theorems. Diameter and volume are common

metric-geometric objects on a Riemannian manifold. These objects are defined via the

metric structure of the manifold, whose properties are dominated by geodesic behaviors.

Analytically, a geodesic, as a locally length-minimizing curve, yields a nonlinear ODE. Its

linearization, called the Jacobi equation, is closely connected to the curvature of the under-

lying manifold.

Let (Mn, g) be a Riemannian manifold. Then let us recall that the exponential map Expp :

TpM
n →Mn at a point p ∈Mn is defined as follows. For any v ∈ TpM

n, let γ : [0, 1] →Mn

be the unique geodesic satisfying γ(0) = p and γ′(0) = v. Then Expp(v) ≡ γ(1).

Lemma 2.1. In the above notations, the curve Expp(sv) always represents a geodesic starting

from p with the initial vector v ∈ TpM
n.

Proof. Indeed, let γ : [0, 1] → Mn be the unique geodesic satisfying γ(0) = p and γ′(0) = v.

For any 0 < s < 1, letting γs(t) = γ(st), we have γ′s(t) = sγ′ which implies ∇γ′sγ
′
s ≡ 0.

Checking the initial data, we have

γs(0) = p, γ′s(0) = sv. (2.1)

Therefore, Expp(sv) = γs(1) = γ(s) which means Expp maps a line in TpM
n to a geodesic.

□

Next, we will introduce the variation of a smooth curve. Let U ⊂ Mn be a domain and

let γ : [a, b] → U be a C1-curve. A one-parameter variation of γ is a map

V : [a, b]× (−1, 1) → U (2.2)

such that V (t, 0) = γ(t) for all t ∈ [a, b]. From now on, we assume that V is piecewise Ck

with k ≥ 1. Note that there are two families of curves γs(·) ≡ V (·, s) and σt(·) ≡ V (t, ·).
The variation vector field X(t) along γ is defined by

X(t) ≡ ∂

∂s

∣∣∣
s=0

V (t, s) = σ′
t(0). (2.3)

For the above family of curves γs, let us denote

Es ≡ Eg(γs) =

ˆ b

a

⟨γ′s, γ′s⟩dt, (2.4)

for any s ∈ (−1, 1). Then we have the following first variation formula of arc length.
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Lemma 2.2 (First variation of energy). Let γ : [a, b] → Mn be a smooth curve and let

V : [a, b]× (−1, 1) → Mn be a smooth variation of γ. Let X be the variational vector field.

Then the following holds,

d

ds

∣∣∣
s=0

Es =

ˆ b

a

⟨∇γ′X(t), γ′(t)⟩dt = ⟨X(b), γ′(b)⟩ − ⟨X(a), γ′(a)⟩ −
ˆ b

a

⟨X,∇γ′γ
′⟩dt. (2.5)

It is a fundamental fact in Riemannian geometry that the exponential map acts isometri-

cally along the radial direction, which is called Gauß Lemma.

Lemma 2.3 (Gauß Lemma). For any p ∈ Mn, the exponential map Expp preserves the

metric along radial directions, i.e., for any t0 ≥ 0,

⟨D(Expp)t0v(v), D(Expp)t0v(w)⟩ = ⟨v, w⟩. (2.6)

Proof. It suffices to consider the case when w ⊥ v. For simplicity, letting ∥v∥ = ∥w∥ = 1,

we construct a family of lines

L(t, s) ≡ t(v cos s+ w sin s) (2.7)

and consider the variation V (t, s) ≡ Expp(L(t, s)), t ∈ [0, t0], s ∈ [−1, 1] of γ(t) ≡ Expp(tv).

It follows from straightforward computations that Es = t0, and thus

0 =
d

ds

∣∣∣
s=0

Es = ⟨X(t0), D(Expp)t0v(v)⟩ − ⟨w, v⟩. (2.8)

Since X(t0) =
∂
∂s

∣∣∣
s=0

V (t0, s) = t0 ·D(Expp)t0v(w), we have that

⟨D(Expp)t0v(v), D(Expp)t0v(w)⟩ = 0, (2.9)

which completes the proof. □

Using the exponential map, let us make the following notation: given p ∈Mn, the conju-

gate domain Conj(p) ⊂ TpM
n is the set of vectors v ∈ TpM

n such that Expp is not singular

at tv for any 0 < t ≤ 1. As a comparison, let Seg(p) ⊂ TpM
n be the set of vectors v ∈ TpM

n

such that

dg(p,Expp(v)) = ∥v∥, (2.10)

called the segment domain of Expp. We also define

injradp ≡ sup{r > 0 : Br(0
n) ⊂ TpM

n ∩ Seg(p)}, (2.11)

conjradp ≡ sup{r > 0 : Br(0
n) ⊂ TpM

n ∩ Conj(p)}. (2.12)

Definition 2.1 (Cut locus). Denote by

ℓx,v ≡ max{t0 > 0|γx,v : [0, t] →Mn is minimizing for each t < t0}, (2.13)

then for x ∈Mn the cut locus Cx is defined by

Cx ≡ {y ∈Mn|y ≡ γx,v(ℓx,v) for some x, v}. (2.14)
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Given x ∈Mn, consider the ϵ-tubular neighborhood of Cx defined by

Cx,ϵ ≡ {y ∈Mn|y ≡ γx,v(ℓx,v − t), |t| < ϵ}. (2.15)

Notice that, we can take a smooth neighborhood Cx ⊂ Uϵ ⊂ Cx,ϵ such that if N is the

outward normal of ∂(BR(x) \ Uϵ), then

⟨N,∇dx⟩ > 0. (2.16)

Now let p ∈ Mn and let r(x) ≡ dg(x, p) be the distance to p. One can choose a geodesic

polar coordinate {r, θ1, . . . , θn−1} via the exponential map. Then it follows from Gauß Lemma

that |∂r| = |∇r| = 1.

In studying local geometry of Riemannian manifolds, the most important coordinate sys-

tem is the geodesic normal coordinates.

Lemma 2.4 (Geodesic normal coordinates). Let (Mn, g) be a Riemannian manifold. For

any p ∈ Mn, there is a coordinate system {xi}ni=1 such that gij(p) = δij and Γkij(p) = 0 for

all 1 ≤ i, j, k ≤ n. In particular, as r → 0,

|gij − δij| = O(r2) and |∇ −∇0| = O(r). (2.17)

With the above preparations, we are ready to connect the behaviors of geodesics and

curvature. A primary difficulty is that geodesics yield nonlinear differential equations. Thus

one needs first understand its linearization, i.e., geodesic variation.

On a Riemannian manifold (Mn, g), given a curve γ : [a, b] →Mn, a variation

V : [a, b]× (−1, 1) →Mn (2.18)

of γ, by definition, is a smooth surface with V (t, 0) = γ(t). Now a variation V : [a, b] ×
(−1, 1) → Mn of γ is called a geodesic variation if γs(·) ≡ V (·, s) is a geodesic for any

s ∈ (−1, 1). The variation vector field

J(t) ≡ ∂

∂s

∣∣∣
s=0

V (t, s) (2.19)

is called a Jacobi field along γ. Let p ∈ U ⊂ Rn and we consider a specific geodesic variation

V (t, s) = Expp(t(u+ sv)). (2.20)

Then its variation vector field J(t) is expressed as J(t) = t·(DExp)tu(v). Obviously, J(0) = 0

and J ′(0) = v. As a linearization, a Jacobi field satisfies a linear ODE

Lemma 2.5. Let J(t) be a Jacobi field along a geodesic γ. Then J satisfies

J ′′(t) + Rm(J(t), γ′(t))γ′(t) = 0. (2.21)
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Proof. Let V : [a, b]× (−1, 1) →Mn be a geodesic variation of a geodesic γ. We denote

J ≡ V∗

(
∂

∂s

)
, T ≡ V∗

(
∂

∂t

)
. (2.22)

So it follows that

∇T ∇T J = ∇T ∇J T −∇J∇T T +∇J∇T T . (2.23)

Since V is a geodesic variation, ∇T T ≡ 0. Therefore,

∇T ∇T J = ∇T ∇J T −∇J∇T T = −Rm(J , T )T . (2.24)

Letting s = 0, the desired equation follows. □

Let γ : [0, 1] → U be the geodesic with γ(0) = p and γ′(0) = v. Let U(t) and W (t) be

the Jacobi fields along a geodesic γ that determined by the initial values U(0) = W (0) = 0,

U ′(0) = u, and W ′(0) = w. Let us compute the Taylor expansion of the 1-variable function

g(U(t),W (t)) at t = 0. To do this, the coefficients at 0 are given by

g(U(0),W (0)) = 0, (g(U,W ))′(0) = 0, (g(U,W ))′′(0) = 2g(u,w), (2.25)

(g(U,W ))′′′(0) = 0, (g(U,W ))(4)(0) = −8R(v, u, w, v). (2.26)

Let U be the Jacobi field along γ with U(0) = 0 and U ′(0) = u. Then the Taylor expansion

of |U(t)|2 along γ at t = 0 is given by

|J(t)|2 = t2 − 1

3
sec(v, u)t4 +O(|t|5). (2.27)

Using the above calculations, we are able to compute the Taylor expansion of (gij) along

a geodesic γ. To do this, now let us consider the geodesic variation in geodesic normal

coordinates {xi}ni=1,

Vi(t, s) ≡ (tv1, . . . , t(vi + s), tvn). (2.28)

Then the Jacobi field Ji(t) can be expressed as Ji(t) = t∂i which implies that

gij = g(∂i, ∂j) = t−2g(Ji(t), Jj(t)). (2.29)

Therefore,

gij = δij −
R(x, ei, ej, x)

3
t2 +O(|x|3) = δij −

1

3
Rkijℓx

kxℓ +O(|x|3), (2.30)

where xk ≡ t · vk. Similarly, one has the following expansions√
det(gij) = 1− 1

6
Rickℓ(p)x

kxℓ +O(|x|3), (2.31)

Volg(Br(p))

Vol0(Br)
= 1− Scalg

6(n+ 2)
r2 +O(r4). (2.32)
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Riemann curvature also relates the metric or geodesic behavior via the Hessian of the

distance function. The shape operator S : TpM
n → TpM

n is defined as

S(X) ≡ ∇X∂r. (2.33)

Immediately, one can see that the shape operator is related to the Hessian of r by

⟨S(X), Y ⟩ = ∇2r(X, Y ) = ⟨∇X∇r, Y ⟩. (2.34)

Lemma 2.6. Let (Mn, g) be a Riemannian manifold. Then following identities hold.

(1) (Radial variation) L∂rg = 2∇2r.

(2) (Ricatti equation) Let R∂r(X) ≡ Rm(X, ∂r)∂r. Then ∇∂rS + S2 +R∂r = 0.

Theorem 2.7 (Metric and Hessian Comparison). Let (Mn, g) satisfy κ ≤ secg ≤ K. Then

for any p ∈Mn, the following holds on ∂Br(p) for any r ∈ (0, injradp):

(1) (metric comparison) gK(r) ≤ g(r) ≤ gκ(r);

(2) (Hessian comparison) SK ≤ S(r) ≤ Sκ(r);

(3) (local behavior of Hessian) S(r) = 1
r
I +O(r), r → 0.

Here gk(r) ≡ snk(r)I, Sk(r) ≡
sn′k(r)

snk(r)
I, and

snk(r) =


1√
k
sin(

√
kr), k > 0,

r, k = 0,
1√
−k sinh(

√
−kr), k < 0.

(2.35)

Remark 2.1. Given κ ∈ R, the function snk(r) is the unique solution of the ODE

f ′′(r) + κf(r) = 0, f(0) = 0, f ′(0) = 1. (2.36)

The above metric and Hessian comparisons give a unified proof of the Jacobi field com-

parison.

Theorem 2.8 (Rauch/Berger). Let (Mn, g) be complete and κ ≤ secg ≤ K. Let γ(t) be a

geodesic without conjugate points. If a Jacobi field J(t) along γ(t) that satisfies the initial

data 
J(0) = Jκ(0) = JK(0) = 0

|J ′(0)| = |J ′
κ(0)| = |J ′

K(0)| ≠ 0

⟨J ′(0), γ′(0)⟩ = ⟨J ′
κ(0), γ

′(0)⟩gκ
= ⟨J ′

K(0), γ
′(0)⟩gK

or


J ′(0) = J ′

κ(0) = J ′
K(0) = 0

|J(0)| = |Jκ(0)| = |JK(0)| ≠ 0

⟨J(0), γ′(0)⟩ = ⟨Jκ(0), γ′(0)⟩gκ
= ⟨JK(0), γ′(0)⟩gK ,

(2.37)

then

|JK(t)| ≤ |J(t)| ≤ |Jκ(t)|. (2.38)
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Ricci curvature, by definition, is the trace of Riemann curvature tensor. Since sectional

curvature directly controls the behaviors of the metric tensor and the Hessian of the distance

function, it is expected that the comparison geometry of Ricci curvature gives an “averaged”

control on the Riemannian metrics, namely volume comparison and Laplacian comparison.

In technical computations, Bochner formula plays a fundamental role.

Lemma 2.9 (Bochner). Let f ∈ C∞(Mn). Then

1

2
∆|∇f |2 = |∇2f |2 + ⟨∇f,∇∆f⟩+Ric(∇f,∇f). (2.39)

Corollary 2.10 (Riccati equation). Let p ∈ Mn and let r(x) ≡ d(p, x) be the distance

function to p. Then the following holds:

∂rH + | II |2 +Ricrr = 0. (2.40)

Theorem 2.11 (Local comparison). Let (Mn, g) be complete with Ricg ≥ (n − 1)κ. Given

p ∈Mn, let r(x) ≡ d(p, x) be the distance function to p. Then the following holds:

(1) (Laplacian) ∆r ≤ (n− 1) sn
′
κ(r)

snκ(r)
when r is smooth.

(2) (Volume density)
√
G ≤ snn−1

k (r). Moreover, “=” holds for all r > 0 iff M has

constant curvature κ.

Lemma 2.12. If a C1-function u(r) satisfies{
−K ≤ u′(r) + u2(r) ≤ −κ
u(r) = 1

r
+O(r) as r → 0,

(2.41)

or {
−K ≤ u′(r) + u2(r) ≤ −k
u(0) = 0.

(2.42)

Then uK(r) ≤ u(r) ≤ uκ(r), where uk(r) =
sn′k(r)

snk(r)
for any k ∈ R.

Proof of Theorem 2.11. Proof of item (1). First, we will prove that as r → 0,

H(r) = (n− 1)
1

r
+O(r). (2.43)

Let us denote by g0 the Euclidean metric on Expp(S̊eg). Since the Taylor expansion of the

metric tensor gij (in normal coordinates) along γ is given by

gij(t) = g0 +O(t2), (2.44)

applying Koszul’s formula, we have

∇ = ∇0 +O(r), (2.45)
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where ∇ = ∇g and ∇0 = ∇g0 . Therefore,

II∂r = ∇(∇r) = ∇(∇0r0) = (∇0 +O(r))(∇0(r0)) = (∇0)2r0 +O(r) =
1

r
· g0 +O(r). (2.46)

Tracing the above expansion, we have H(r) = n−1
r
+O(r). Let u(r) = H(r)

n−1
. Applying Lemma

2.12 to u(r), the Laplacian comparison just follows.

Now we prove item (2). Let us denote G ≡ det(g) and µ ≡
√
G. Then it follows that( µ

µκ

)′
=
µ′(r)µκ(r)− µ(r)µ′

κ(r)

µ2
κ

=
(H(r)−Hκ(r))µ(r)µκ(r)

µ2
κ

≤ 0. (2.47)

Now assuming µ(r) = µκ(r) for all r ≥ 0. Then H(r)µ(r) = µ′(r) = µ′
κ(r) = Hκ(r)µκ(r),

and hence H(r) = mκ(r) = (n− 1) sn
′
κ(r)

snκ(r)
, and µ(r) = snn−1

κ (r)I. Therefore,

−(n− 1)κ = H ′ +
H2

n− 1
≤ H ′ + Tr(II2) = −Ricrr ≤ −(n− 1)κ. (2.48)

“=” holds in all the above inequalities, which implies (∆r)2 = (n− 1)Tr(II2). Equivalently,

λ1 = . . . = λn = λ = sn′κ(r)
snκ(r)

, where λi’s are (n−1) non-zero eigenvalues of ∇2r. Consequently,

∇2r = λ ·

(
0 0

0 Idn−1

)
, (2.49)

and hence G(r) = Gκ(r). It follows from the fact L∂rg = 2Hess(r)g, and the initial condition

gri(0) = gij(0) = 0 (i ̸= j), grr(0) = gii(0) = 1 that gij = gir = 0 (i ̸= j), grr = 1, and

gii(r) = sn2
κ(r). Therefore, g has constant curvature κ. □

Theorem 2.13 (Global Laplcian Comparison I). Let (Mn, g) be complete with Ric ≥ (n−
1)κ. Let r(x) ≡ d(p, x) for p ∈ Mn. Then ∆r is a signed Radon measure on (Mn, g) with

the decomposition

∆r = µac + µsing (2.50)

such that

µac ≤ (n− 1)
sn′

κ(r)

snκ(r)
(2.51)

and µsing is non-positive and supported in Cp, where Cp denotes the cut locus of p. In particu-

lar, the Laplacian comparison holds in the distributional sense, namely for any φ ∈ C∞
0 (Mn),

φ ≥ 0, we have ˆ
Mn

r∆φ dvolg ≤
ˆ
Mn

(
(n− 1)

sn′
κ(r)

snκ(r)

)
· φ dvolg . (2.52)
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Proof. We only verify that µsing is non-positive. Let BR+(y) ⊂ BR(y)\ ({p}∪Cp) be the set
on which ∆r > 0. Let ∂B−

R(y) ⊂ ∂BR(y)\({p}∪Cp) denote the subset on which ⟨∇r,N⟩ < 0,

where N is the outward unit normal vector field. For any ϵ > 0, taking some open set Uϵ
such that Cp ⊂ Uϵ ⊂ Tϵ(Cp). Let N̂ be the outward unit normal vector field to ∂(BR(y) \Uϵ)
at x ∈ BR(y) ∩ ∂Uϵ. Then ⟨∇r, N̂⟩ ≥ 0.

Let f ∈ C∞(Mn) with ∇f ≡ 0 near ∂BR(y). Then

lim
η→0

ˆ
BR(y)\Bη(q)

r∆f = −
ˆ
BR(y)

⟨∇r,∇f⟩

= lim
ϵ→0

ˆ
BR(y)\Uϵ

f∆r − lim
ϵ→0

ˆ
∂BR(y)\Uϵ

⟨∇r,N⟩f − lim
ϵ→0

ˆ
BR(y)\∂Uϵ

⟨∇r,N⟩f

=

ˆ
BR(y)\Cp

f∆r −
ˆ
∂BR(y)

⟨∇r,N⟩f − lim
ϵ→0

ˆ
BR(y)∩∂Uϵ

⟨∇r, N̂⟩f. (2.53)

Notice that the last term in the above equality is non-positive. Letting f ≡ 1, the conclusion

follows. □

2.2. Volume comparison and applications.

Theorem 2.14 (General relative volume comparison). Let (Mn, g, p) be complete such that

Ric ≥ (n− 1)κ. Assume that r1 ≤ r2 ≤ r3 ≤ r4, then

Vol(Ar3,r4(p))

Volk(Ar3,r4(0
∗))

≤ Vol(Ar1,r2(p))

Volk(Ar1,r2(0
∗))
. (2.54)

Equality holds if and only if Ar1,r4(p) is isometric to Ar1,r4(0
∗) ⊂ Snκ .

Proof. Let f(r) ≡ Area(∂Br(x))
Areaκ(∂Br(0∗))

= Area(∂Br(x))√
Gκ(r)·ωn−1

. Let {r,Θ} be the geodesic polar coordinate

system. Then

df

dr
=

1

ωn−1

ˆ
Sn−1

√
G√
Gκ

·
(∂r√G√

G
− ∂r

√
Gκ√
Gκ

)
dΘ

≤ 1

ωn−1

ˆ
Sn−1

√
G√
Gκ

· (H(r)−Hκ(r))dΘ ≤ 0, (2.55)
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and f(0) = 1. Next,

Vol(Ar3,r4(x)) · Volκ(Ar1,r2(0∗)) =
(ˆ r4

r3

A(t)dt
)
·
(ˆ r2

r1

Aκ(t)dt
)

=
(ˆ r4

r3

f(t)Aκ(t)
)
·
( ˆ r2

r1

Aκ(t)dt
)

≤ f(r3)
(ˆ r4

r3

Aκ(t)dt
)
·
(ˆ r2

r1

Aκ(t)dt
)

≤
(ˆ r4

r3

Aκ(t)dt
)
·
(ˆ r2

r1

f(t)Aκ(t)dt
)

= Volκ(Ar3,r4(0
∗)) · Vol(Ar1,r2(x)). (2.56)

So the proof of the comparison is done.

Next, when equality holds, f(r1) = f(r4). Then the proof of Laplacian comparison implies

that Ar1,r4(p) is isometric to Ar1,r4(0
n). □

Corollary 2.15. Let (Mn, g, p) be complete such that Ric ≥ (n− 1)κ. For any R > 0,

Area(∂BR(p))

Areak(∂BR(0∗))
≤ Vol(BR(p))

Volk(BR(0∗))
, (2.57)

and equality holds if and only if BR(p) is isometric to BR(0
∗) ⊂ Snk .

Proof. For any ϵ > 0 and R > 0, by Theorem 2.14,

Vol(BR+ϵ(p))− Vol(BR(p))

Volκ(BR+ϵ(0∗))− Volκ(BR(0∗))
=

Vol(AR,R+ϵ(p))

Volκ(AR,R+ϵ(0∗))
≤ Vol(BR(p))

Volκ(BR(0∗))
, (2.58)

which implies
1
ϵ
· (Vol(BR+ϵ(p))− Vol(BR(p)))

1
ϵ
· (Volκ(BR+ϵ(0∗))− Volκ(BR(0∗)))

≤ Vol(BR(p))

Volκ(BR(0∗))
. (2.59)

Letting ϵ→ 0, the desired comparison immediately follows.

For the rigidity part, we assume Area(∂BR(p))
Areaκ(∂BR(0∗))

= Vol(BR(p))
Volκ(BR(0∗))

and let

V (r) ≡ Vol(Br(p)), Vκ(r) ≡ Volκ(Br(0
∗)) (2.60)

and

S(r) ≡ Area(∂Br(p)), Sκ(r) ≡ Areaκ(∂Br(0
∗)). (2.61)

Then

V (R)

S(R)
=

´ R
0
S(t)dt

S(R)
=

ˆ R

0

S(t)

S(R)
dt. (2.62)

By the relative area comparison, it holds that for every 0 < t ≤ R,

S(t)

S(R)
≥ Sκ(t)

Sκ(R)
. (2.63)
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Therefore,

V (R)

S(R)
≥
ˆ R

0

Sκ(t)

Sκ(R)
=

´ R
0
Sκ(t)dt

Sκ(R)
=
Vκ(R)

Sκ(R)
. (2.64)

The assumption V (R)
S(R)

= Vκ(R)
Sκ(R)

and the above inequality imply that for every 0 < t ≤ R,

S(R)

Sκ(R)
≡ S(t)

Sκ(t)
. (2.65)

Since lim
t→0

S(t)
Sκ(t)

= 1, so for every 0 < t < R, S(t) = Sκ(t) and hence V (t) = Vκ(t). Then

BR(p) is isometric to BR(0
n) ⊂ Snκ .

□

Theorem 2.16 (Bishop-Gromov’s relative volume comparison). Let (Mn, g) be complete

and satisfy Ricg ≥ (n− 1)κ. Then for any x ∈Mn, the quantity

Qx(r) ≡
Vol(Br(p))

Vk(r)
(2.66)

is monotone decreasing with lim
r→0

Qx(x) = 1, where Vk(r) ≡ Volκ(Br(0
∗)) and Br(0

∗) ⊂ Snκ .

Moreover, if Qx(R) = Qx(r) for some r ≤ R, then BR(x) is isometric to BR(0
∗).

Proof. For any R > r > 0, applying Theorem 2.14,

Vol(BR(p))− Vol(Br(p))

Volκ(BR(0∗))− Volκ(Br(0∗))
≤ Vol(Br(p))

Volκ(Br(0∗))
. (2.67)

Straightforward computations imply

Vol(BR(p))

Volκ(BR(0∗))
≤ Vol(Br(p))

Volκ(Br(0∗))
. (2.68)

Now let us prove the rigidity part. First, by volume comparison, for any ϵ ∈ (0, R− r),

Vol(BR(p))

Volk(BR(0n))
≤ Vol(BR−ϵ(p))

Volk(BR−ϵ(0n))
≤ Vol(Br(p))

Volk(Br(0n))
. (2.69)

If Vol(BR(p))
Volk(BR(0n))

= Vol(Br(p))
Volk(Br(0n))

holds for some 0 < r < R, we have that for every ϵ ∈ (0, R− r),

Vol(BR(p))

Volk(BR(0n))
=

Vol(BR−ϵ(p))

Volk(BR−ϵ(0n))
=

Vol(Br(p))

Volk(Br(0n))
, (2.70)

and hence for every ϵ > 0

Vol(BR(p))− Vol(BR−ϵ(p))

Volk(BR(0n))− Volk(BR−ϵ(0n))
=

Vol(Br(p))

Volk(Br(0n))
. (2.71)

Let ϵ→ 0,
Vol(∂BR(p))

Volk(∂BR(0n))
=

Vol(Br(p))

Volk(Br(0n))
=

Vol(BR(p))

Volk(BR(0n))
. (2.72)

Then the isometric rigidity follows from Corollary 2.15. □



20 TOPICS IN METRIC RIEMANNIAN GEOMETRY (INCOMPLETE NOTES)

Theorem 2.17 (Bonnet-Myers). Let (Mn, g) satisfy Ricg ≥ n− 1. Then diamg(M
n) ≤ π.

Proof. We prove it by contradiction. Suppose there exists ϵ > 0 such that diamg(M
n) = π+ϵ.

Let γ : [0, π+ ϵ] →Mn be a minimal geodesic connecting p, q ∈Mn such that L(γ) = π+ ϵ.

We denote r(x) ≡ d(x, p). Then r is smooth at γ(t) for t ∈ (0, π + ϵ). By Laplacian

comparison,

(∆r)(γ(t)) ≤ (n− 1) · cos t
sin t

→ −∞, as t→ π. (2.73)

Contradiction. □

Theorem 2.18 (Cheng’s Maximal Diameter Theorem). Let (Mn, g) satisfy Ricg ≥ n − 1

and diamg(M
n) = π. Then (Mn, g) must be isometric to the round sphere Sn of curvature

+1.

Proof. We will apply the relative volume comparison theorem to prove this rigidity. Let

p, q ∈ Mn satisfy dg(p, q) = π Let us denote Bπ
2
(0∗) ≡ {(x1, . . . , xn+1) ∈ Sn : xn+1 > 0}.

Notice that

Bπ(p) = Bπ(q) =Mn, (2.74)

and hence

Volg(Bπ(p)) = Volg(Bπ(q)) = Volg(M
n). (2.75)

Applying volume comparison,

Vol(Bπ
2
(p))

Volg1(Bπ
2
(0∗))

≥ Vol(Bπ(p))

Vol(Sn)
. (2.76)

Immediately,

Vol(Bπ
2
(p))

Vol(Mn)
≥

Volg1(Bπ
2
(0∗))

Vol(Sn)
=

1

2
. (2.77)

“=’ holds iff Bπ(p) is isometric to Sn. Similarly, Vol(Bπ
2
(q)) ≥ 1

2
Vol(Mn). On the other

hand, (.p, q) = π implies Bπ
2
(p) = Bπ

2
(q) = ∅. Therefore,

Vol(Mn) ≥ Vol(Bπ
2
(p)) + Vol(Bπ

2
(q)) ≥ 1

2
Vol(Mn) +

1

2
Vol(Mn) = Vol(Mn). (2.78)

Therefore,

Volg(Bπ
2
(p)) = Volg(Bπ

2
(q)) =

1

2
Vol(Mn). (2.79)

Applying Bishop-Gromov’s volume comparison, Mn is isometric to Sn. □
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3. Geometry of metric spaces: Gromov-Hausdorff theory

This section introduces basic concept of Gromov-Hausdorff distance between metric spaces,

which is the foundation of studying the metric aspect of Riemannian geometry. We will also

present several basic examples.

3.1. Space of metric spaces and Gromov’s precompactness theorem.

Definition 3.1 (Hausdorff distance). Let (Z, d) be a metric space. Let A,B ⊂ Z be compact.

Then

dH(A,B) ≡ inf{r > 0|B ⊂ Tr(A) and A ⊂ Tr(B)}. (3.1)

Theorem 3.1. Denote by M(Z) the collection of all subsets in the metric space (Z, d). Then

(M(Z), dH) is a metric space.

Theorem 3.2. If (Z, d) is compact, then (M(Z), dH) is also compact.

Definition 3.2 (Gromov-Hausdorff distance). Let (X, dX) and (Y, dY ) be compact metric

spaces. Then we define

dGH(X, Y ) ≡ inf
Z,ϕ,ψ

{
dZH(ϕ(X), ψ(Y )) : ϕ : X → Z, ψ : Y → Z are isometric embeddings

}
.

Let A and B be two sets. Then we define

A ⊔B ≡ {(x, 0) : x ∈ A} ∪ {(y, 1) : y ∈ B}. (3.2)

Let (X, dX) and (Y, dY ) be metric spaces. We denote by d̄ the admissible metric on X ⊔ Y
which isometrically extends dX and dY into X ⊔ Y .

Lemma 3.3. Let (X, dX) and (Y, dY ) be compact metric spaces. We define

d̂GH(X, Y ) ≡ inf
d̄

{
dH(X, Y ) : d̄ is an admissible metric on X ⊔ Y

}
. (3.3)

Then dGH = d̂GH .

Proof. By definition, dGH ≤ d̂GH . We will prove d̂GH ≤ dGH . For any ϵ > 0, there exist a

metric space (Z, d) and isometric embeddings

ϕ : X ↪→ Z, ψ : Y ↪→ Z (3.4)

such that dH(ϕ(X), ψ(Y )) ≤ dGH(X, Y ) + ϵ. Let us consider the product metric dϵ on

Z × [0, ϵ] and isometric embeddings

ϕ0 ≡ (ϕ, 0) : X × {0} ↪→ Z × {0}, ψϵ ≡ (ψ, ϵ) : Y × {ϵ} ↪→ Z × {ϵ}. (3.5)
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The restriction of dϵ onto (ϕ(X)×{0})∪ (ψ(Y )×{ϵ}) ⊂ Z× [0, ϵ] gives an admissible metric

d̄ϵ on X ⊔ Y (realized by ϕ0(X) ⊔ ψϵ(Y )). Then

d̂GH(X, Y ) ≤ d̄ϵH(X, Y )

= d̄ϵH(ϕ0(X), ψϵ(Y ))

≤ d̄ϵH(ϕ0(X), ϕ(X)× {ϵ}) + d̄ϵH(ϕ(X)× {ϵ}, ψ(Y )× {ϵ})
≤ 2ϵ+ dGH(X, Y ), (3.6)

which completes the proof. □

Lemma 3.4. Denote by Met the collection of all compact metric spaces. Then dGH is a

pseudo metric on Met. Furthermore, dGH(X, Y ) = 0 if and only if X is isometric to Y .

Proof. First, let us prove the triangle inequality. Given any compact metric spaces (X, dX),

(Y, dY ) and (Z, dZ), we will show that for any ϵ > 0,

dGH(X,Z) ≤ dGH(X, Y ) + dGH(Y, Z) + ϵ. (3.7)

Taking admissible metrics dXY and dY Z on X ⊔ Y and Y ⊔ Z, respectively, such that

dXY,H(X, Y ) ≤ dGH(X, Y ) +
ϵ

2
, dY Z,H(Y, Z) ≤ dGH(Y, Z) +

ϵ

2
. (3.8)

One can check that

dXZ(x, z) ≡ inf {dXY (x, y) + dY Z(y, z) : y ∈ Y } (3.9)

is an admissible metric on X ⊔ Z. Then the collection {dXY , dY Z , dXZ} gives an admissible

metric on X ⊔ Y ⊔ Z. Therefore, using the above admissible metrics,

dGH(X,Z) ≤ dH(X,Z) ≤ dH(X, Y ) + dH(Y, Z) ≤ dGH(X, Y ) + dGH(Y, Z) + ϵ, (3.10)

which completes the proof of the triangle inequality.

Now we are in a position to show that X is isometric to Y if dGH(X, Y ) = 0. The goal

is to construct an isometry from X to Y . By dGH(X, Y ) = 0, there exist di on X ⊔ Y such

that diH(X, Y ) ≤ 2−i → 0. Let A ≡ {xk}∞k=1 ⊂ X be countable and dense (Why does A

exist?). For x1 ∈ A, let {y1,i} ⊂ Y be a sequence such that di(x1, y1,i) < 2−i. Since (Y, dY )

is compact, {y1,i} has a subsequence {y1,i1} which converges to y1 ∈ Y . Then

di1(x1, y1) ≤ di1(x1, y1,i1) + di1(y1,i1 , y1) → 0. (3.11)

Similarly, for x2 and the sequence {di1}, we choose a subsequence {di2} ⊂ {di1} and a point

y2 ∈ Y such that di2(x2, y2) → 0. Iterating the above process and applying the diagonal

argument, one can select a subsequence of admissible metrics {dℓ} ⊂ {di} and a sequence of

points yk ∈ Y such that for any k ∈ Z+,

dℓ(xk, yk) → 0, as ℓ→ 0. (3.12)
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Now we define f : A→ Y by f(xk) ≡ yk. Then

dY (f(xj), f(xk)) = dℓ(f(xj), f(xk)) = dℓ(yj, yk) ≤ dℓ(yj, xj) + dℓ(xj, xk) + dℓ(xk, yk).

Taking the limit for ℓ→ ∞,

dY (f(xj), f(xk)) ≤ lim
ℓ→∞

dℓ(xj, xk) = lim
ℓ→∞

dX(xj, xk) = dX(xj, xk). (3.13)

Using the triangle inequality

dℓ(yj, yk) ≥ −dℓ(yj, xj) + dℓ(xj, xk)− dℓ(xk, yk), (3.14)

one can prove dY (f(xj), f(xk)) ≥ d(xj, xk). The above shows that f : A→ X is an isometric

embedding. Since A is dense in X, f extends uniquely to an isometric embedding X → Y .

One can use the same argument to construct an isometric embedding h : Y → X. □

Theorem 3.5. We denote by Met the collection of all isometry classes of compact metric

spaces. Then (Met, dGH) is a complete metric space.

Definition 3.3 (Gromov-Hausdorff convergence). We say a sequence of compact metric

spaces (Xj, dj) GH-converge to (X, d) if dGH(Xj, X) → 0.

Definition 3.4 (ϵ-net). Let (X, dX) be a metric space. For every ϵ > 0, a subset Xϵ ⊂ X is

called ϵ-net of X if Xϵ is ϵ-dense in X.

Lemma 3.6. A complete metric space (X, dX) is compact iff it is complete and for every

ϵ > 0, there exists an ϵ-net Xϵ with #(Xϵ) <∞.

Lemma 3.7. Let (Xj, dj)
GH−−→ (X∞, d∞). Then the following properties hold:

(1) diam(Xj) → diam(X∞) <∞.

(2) For any ϵ > 0, there exists some number N = N(ϵ) > 0 such that Xj has an ϵ-net

Xj(ϵ) with |Xj(ϵ)| ≤ N(ϵ) for all j.

Theorem 3.8 (Gromov’s Precompactness Theorem). A subset C of (Met, dGH) if compact

if and only

(1) there exists some D > 0 such that diam(X) ≤ D for any X ∈ C;
(2) for any ϵ > 0, there exists N0 = N0(ϵ) > 0 such that for any ϵ > 0, X has an ϵ-net

X(ϵ) such that |X(ϵ)| ≤ N0(ϵ).

Proof. Given any sequence {Xj} ⊂ C, we will select a Cauchy subsequence {Xjk} such that

for any ϵ > 0, there exists some N > 0 such that for all jk, jℓ ≥ N ,

dGH(Xjk , Xjℓ) < ϵ. (3.15)

Let Xjk(ϵ), Xjℓ(ϵ) denote some ϵ-nets, respectively. By triangle inequality,

dGH(Xjk , Xjℓ) ≤ dGH(Xjk(ϵ), Xjℓ(ϵ)) + 2ϵ. (3.16)
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So it suffices to find a subsequence of {Xjk} such that Xjk(ϵ) converges.

First, let ϵj → 0 be a monotone sequence. We take an ϵ1-net Xj(ϵ1) ≡ {xj1, . . . , xjs1} of

Xj. By assumption, s1 ≤ N0(ϵ). Passing to a subsequence, we can just assume s = sj for all

j. Let dj ≡ dXj

∣∣∣
Xj(ϵ1)

. The matrix (dj(x
j
k, x

j
ℓ)) can be viewed as a point in Rs2 and

|(dj(xjk, x
j
ℓ))− 0s

2|2 =
s∑

k,ℓ=0

dj(x
j
k, x

j
ℓ)

2 ≤ s ·D2. (3.17)

Then there exists a convergent subsequence of the above matrix sequence such that

|(dj1(x
j1
k , x

j1
ℓ ))− (dj′1(x

j′1
k , x

j′1
ℓ ))| < ϵ1. (3.18)

Therefore, dGH(Xj1(ϵ), (Xj′1
(ϵ)) < ϵ1 for all j1, j

′
1.

For ϵ2 > 0 and {Xj1}, repeating the above, we have a subsequence Xj2(ϵ) such that

dGH(Xj2(ϵ), (Xj′2
(ϵ)) < ϵ1 for all j2, j

′
2. Iterating the above and applying the standard diag-

onal argument, we can find a subsequence {Xℓ} which is a Cauchy sequence.

Finally, for any ϵ > 0, we pick ϵj <
ϵ
3
. By our construction,

dGH(Xk(ϵj), Xℓ(ϵj)) < ϵmin{k,ℓ} < ϵj. (3.19)

Then the conclusion follows from the triangle inequality. □

Corollary 3.9 (Gromov). We denote

M(n, κ,D) ≡ {(Mn, g) : diam(Mn) ≤ D, Ricg ≥ (n− 1)κ} . (3.20)

Then M(n, κ,D) is precompact in (Met, dGH).

Proof. Let {pi}Ni=1 be an ϵ-dense subset inM
n such that Bϵ/5(pi)∩Bϵ/5(pj) = ∅ for any i ̸= j.

We take i0 ∈ {1, . . . , N} such that

Vol(B ϵ
5
(pi0)) = min

{
Vol(B ϵ

5
(pi)) : i = 1, . . . , N

}
. (3.21)

Since the above ϵ/5-balls are disjoint,

Vol(BD(pi0)) = Vol(Mn) ≥
N∑
i=1

Vol(Bϵ/5(pi)) ≥ N · Vol(Bϵ/5(i0)). (3.22)

Applying Bishop-Gromov’s volume comparison, we obtain a uniform bound of N ,

N ≤ Vol(BD(pi0))

Vol(Bϵ/5(i0))
≤ Vκ(D)

Vκ(ϵ/5)
= N(ϵ, n,D, κ). (3.23)

Finally, by Theorem 3.8 we conclude the precompactness of M(n, κ,D). □
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Definition 3.5 (Pointed Gromov-Hausdorff convergence). We say a sequence of metric

spaces (Xj, dj, pj) pointed Gromov-Hausdorff converges to (X, d, p) if

(BR(pj), dj, pj)
GH−−→ (BR(p), d, p), ∀R > 0. (3.24)

Example 3.1 (Graph manifold). (M3, gϵ) satisfies | secgϵ | ≤ 1, injradgϵ ≤ ϵ, and the di-

ameter is large diamgϵ(M
3) ≥ τ(ϵ)−1. As ϵ → 0, there are two types of Gromov-Hausdorff

limits: T2 × R and Σ2 × S1.

Graph manifold is an important geometric object in studying the geometry and topology

of 3-manifolds. It is a celebrating result that the only collapsing 3-manifolds with curvature

uniformly bounded below are graph manifolds. This result, now called Perel’man’s Collapsing

Theorem, was first stated by Perel’man, and first proved by Shioya-Yamaguchi.

Theorem 3.10 (Shioya-Yamaguchi 2001 and 2005). There exists an absolute constant ϵ > 0

such that if (M3, g) satisfies secg ≥ −1 and Volg(B1(x)) < v, then M3 is diffeomorphic to a

graph manifold.

In completing the proof of Thurston’s Geometrization Conjecture, Perel’man managed to

prove that the Ricci flow gives a Thick-Thin Decomposition of M3 such that the thick part

admits a hyperbolic metric and the thin part is volume collapsed and hence diffeomorphic

to a graph manifold.

Next, we will give another formulation of Gromov-Hausdorff convergence.

Definition 3.6 (Gromov-Hausdorff approximation). Let (X, dX) and (Y, dY ) be compact

metric spaces. A mapping f : X → Y is called an ϵ-Gromov-Haudorff approximation if the

following holds.

(1) (ϵ-isometric) |dY (f(p), f(q))− dX(p, q)| ≤ ϵ, for all p, q ∈ X;

(2) (ϵ-onto) Tϵ(f(X)) = Y .

We also define

d̃GH(X, Y ) ≡ inf{ϵ > 0 : ∃ ϵ-GHAs f : X → Y, h : Y → X}. (3.25)

Lemma 3.11. 2
3
≤ dGH(X, Y ) ≤ d̃GH(X, Y ) ≤ 2dGH(X, Y ).

Theorem 3.12. Let (Xj, dj), (X, d) ∈ Met. Then the following statements are equivalent:

(1) (Xj, dj)
GH−−→ (X, d).

(2) There exists a sequence of ϵj-GHAs fj : (Xj, dj) → (X, d) such that ϵj → 0.

(3) There exist ϵj-GHAs fj : Xj → X and hj : X → Xj such that

d(fj ◦ hj, IdX) < ϵj, dj(hj ◦ fj, IdXj
) < ϵj. (3.26)
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Definition 3.7 (Tangent cone). Let (X, d) be a metric space and p ∈ X. A metric space

(Y, d∗) is called a tangent cone at p if there exists a sequence λj → ∞ such that

(X,λj · d, p)
GH−−→ (Y, d∗) (3.27)

Definition 3.8 (Asymptotic cone). Let (X, d) be a complete non-compact metric space. A

metric space (Y, d∗) is called an asymptotic cone (or tangent cone at infinity) if there exists

a sequence λj → 0 such that

(X,λj · d, p)
GH−−→ (Y, d∗). (3.28)

Example 3.2. Show that the tangent cone at any point in Riemannian n-manifold is iso-

metric to Rn.

3.2. Examples of Gromov-Hausdorff convergence. This subsection collects some typ-

ical examples of Gromov-Hausdorff convergence.

First we introduce some examples of non-collapsing spaces.

Example 3.3 (Asymptotic cone of Z⊕ Z). Consider the free abelian group

X ≡ Z⊕ Z = {(m,n) : m ∈ Z, n ∈ Z} (3.29)

equipped with the standard discrete metric

d ((m1, n1), (m2, n2)) ≡ |m1 −m2|+ |n1 − n2|. (3.30)

Then

(X, j−2d)
GH−−→ (R2, dL1), (3.31)

where

dL1(x, y) ≡ inf{ℓ(γ) : γ connects x, y by horizontal and vertical segments}. (3.32)

Example 3.4 (Asymptotically conic manifold). Let (Mn, g) satisfy Ricg ≥ 0 and there exists

some v > 0 such that Volg(Br(x)) ≥ vrn for all r > 0. Then by Cheeger-Colding’s theorem,

the asymptotic cone of Mn is a metric cone (C(X), dC) for some compact metric space with

diam(X) ≤ π.

Example 3.5. LeBrun-Singer constructed a family of Ricci-flat Kähler metrics gϵ on the

K3 manifold K such that diamgϵ(K) = 1 and

(K, gϵ)
GH−−→ (T4/Z2, d∞). (3.33)

Example 3.6. M. Anderson constructed a family of metrics gϵ on M
2n ≡ CP n#CP n with

Ricgϵ ≥ 2n− 1, Volgϵ(M
2n) ≥ π > 0 and

(X2n, gϵ)
GH−−→ (S2n, d∞), (3.34)

where diam(S2n) = π and the limit has two conic singularities.
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Next we present some examples of collapsed spaces.

Example 3.7 (Berger sphere).

SU(2) ≡

{(
z −w̄
w z̄

)
: z, w ∈ C, |z|2 + |w|2 = 1

}
. (3.35)

Obviously, SU(2) is diffeomorphic to S3. We define a map π : (z, w) 7→ z/w. Then π gives

a fiber bundle map S1 → SU(2)
π−→ S2 (called Hopf fibration). One can also represents π as

(z, w) 7→
(
Re(zw), Im(zw),

|z|2 − |w|2

2

)
∈ R3. (3.36)

There is a natural S1-acting on SU(2): t · (z, w) ≡ (e
√
−1tz, e−

√
−1tw).

Next we construct a family of collapsing metrics on SU(2). Let X, Y, Z be the left invariant

metrics on SU(2) such that [X, Y ] = Z, [Y, Z] = X, and [Z,X] = Y . Indeed, one can just

use the Pauli matrices

X =
1

2

(
0

√
−1√

−1 0

)
, Y =

1

2

(
0 −1

1 0

)
, Z =

1

2

(√
−1 0

0 −
√
−1

)
. (3.37)

Denote by η1, η2 and η3 the dual frames of X, Y , Z, respectively. We define a family of left

invariant Riemannian metrics on SU(2),

gt ≡ t2η1 ⊗ η1 + η2 ⊗ η2 + η3 ⊗ η3. (3.38)

Then we can compute the connection terms,

∇XX = 0, ∇XY = (2− t2)Z, ∇XZ = (−2 + t2)Y, (3.39)

∇YX = −t2Z, ∇Y Y = 0, ∇YZ = X, (3.40)

∇ZX = t2Y, ∇ZY = −X, ∇ZZ = 0. (3.41)

Furthermore, sec(X, Y ) = t2, sec(X,Z) = t2, and sec(Z, Y ) = 4− 3t2.

Note that, as t → 0, the direction X is collapsing since its integral curve has length 2tπ.

Moreover, the Gromov-Hausdorff limit is the round metric of curvature +4 on the 2-sphere

of radius 1
2
.

Example 3.8 (Klein bottle). Consider the Klein bottle

K2 ≡ {(x, y) ∈ [0, ϵ]× [0, 1]}/{(x, 0) ∼ (x, 1), (0, y) ∼ (ϵ, 1− y)} (3.42)

equipped with the standard flat metric gϵ such that diamg0(K
2) = 1

2
. Then

(K2, gϵ)
GH−−→

[
0,

1

2

]
. (3.43)

Notice that a flat torus cannot collapse to an interval.
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Topological computations tell us that

π1(K
2) = ⟨a, b|abab−1 = 1⟩ (3.44)

and π1(K
2) yields the exact sequence

1 → Z⊕ Z → π1(K
2) → Z2 → 1 (3.45)

such that π1(K
2) ∼= Z2 ⋉ (Z⊕ Z).
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4. Structure Theory for Non-Collapsing Einstein Manifolds

4.1. Regularity theory and curvature estimates.

Definition 4.1 (C1-harmonic radius). Let (Mn, g) be a Riemannian manifold and let

Φ = (u1, . . . , un) : Br(p) → Br(0
n) ⊂ Rn (4.1)

be a diffeomorphism. For fixed ϵ > 0, Φ is called a C1-harmonic coordinate system with

∥Φ∥ ≤ ϵ if the following holds.

(1) ∆gui = 0 on Br(p) for any 1 ≤ i ≤ n;

(2) let gij ≡ g(∇ui,∇uj) we have

|gij − δij|C0(Br(p)) + r|∇gij|C0(Br(p)) < ϵ. (4.2)

The C1-harmonic radius rh(p) at p ∈Mn is defined as

rh(p) ≡ sup
{
r > 0|∃ a C1-harmonic coordinate system Φ : Br(p) → Br(0

n)
}
. (4.3)

Lemma 4.1. In a harmonic coordinate system, we have

Ricij = −1

2
∆gij +Q(∂g). (4.4)

Lemma 4.2. Let (Mn, g) satisfy |Ricg | ≤ λ and let Φ = (u1, . . . , un) : Br(p) → Br(0
n) ⊂ Rn

be a harmonic coordinate system that satisfies ∥Φ∥ < ϵ. Then

r1+α[∇gij]Cα(Br/2(p)) ≤ C(λ, ϵ). (4.5)

Lemma 4.3 (Anderson’s ϵ-regularity). Given n ≥ 2, there exist δ = δ(n) > 0 and r0 =

r0(n) > 0 such that if (Mn, g) satisfies |Ricg | ≤ δ and Volg(B1(x)) ≥ (1 − δ)Vol0(B1) for

all x ∈ B1(p), then for any q ∈ B1/2(p),

rh(q) ≥ r0. (4.6)

Proof. The lemma is proved by contradiction. Suppose no such a δ > 0 exists. That is,

there exist contradiction sequences δj → 0 and (Mn
j , gj) such that |Ricgj | ≤ δj and for all

xj ∈ B1(pj),

Volgj(B1(xj))

Vol0(B1)
≥ 1− δj, (4.7)

but

rj = r(yj) ≡ min
{
rh(qj) : qj ∈ B1/2(pj)

}
→ 0. (4.8)

Let us take the rescaled metric g̃j ≡ r−2
j gj. Then

r
g̃j
h (yj) = 1, and r

g̃j
h (qj) ≥ 1 for all qj ∈ B(2rj)−1(pj) . (4.9)
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Now letting j → ∞, we have

(Mn
j , g̃j, yj)

GH−−→ (Xn
∞, d∞, y∞) (4.10)

such that Ric∞ ≡ 0 on Xn
∞ and Vol∞(Br(x∞)) = Vol0(Br) for all r > 0. Therefore, Xn

∞ ≡ Rn

and hence rh(y∞) > 1. Contradiction! □

Theorem 4.4 (Colding’s volume convergence). For every n ≥ 2, R > 0, and ϵ > 0,

there exists some δ = δ(n,R, ϵ) > 0 such that if (Mn, g) satisfies Ricg ≥ −(n − 1) and

dGH(BR(p), BR(0)) < δ, then

|Volg(BR(p))− Vol0(BR(0))| < ϵ. (4.11)

Theorem 4.5 (Cheeger-Colding’s ϵ-regularity). For every n ≥ 2, there exist numbers

δ = δ(n) > 0 and r0 = r0(n) > 0 such that if (Mn, g) satisfies Ricg ≥ −(n − 1) and

dGH(B2(p), B2(0)) < δ, then

rh(q) ≥ r0 ∀q ∈ B1(p). (4.12)

Theorem 4.6 (Anderson 1992). Given n ≥ 2, there exist ϵ = ϵ(n) > 0 and C(n) > 0 such

that if an Einstein manifold (Mn, g) satisfies Ricg ≥ −(n− 1)g, and

Vol0(B2r)

Volg(B2r(p))

ˆ
B2r(p)

|Rmg |
n
2 < ϵ, (4.13)

then

sup
Br(p)

r2|Rmg | ≤ C(n)

(
Vol0(B2r)

Volg(B2r(p))

ˆ
B2r(p)

|Rmg |
n
2

) 2
n

. (4.14)

Remark 4.1. It follows from theorem 4.4 of Anderson’s paper: The L2-structure of ...

4.2. Metric cone structure and singular set of non-collapsed Ricci limits.

Definition 4.2 (Metric cone (Euclidean cone)). Let (Σ, dΣ) be a compact metric space with

diameter ≤ π. The metric space (Z, dC) ≡ (C(Σ), dC) is called the metric cone over the

cross-section Σ, denoted by C(Σ) ≡ C0(Σ), if Z is homeomorphic to the topological cone

(Σ× [0,∞))/(Σ× {0}) and the cone metric dC is given by

d2(x, y) = d2(z∗, x) + d2(z∗, y)− 2d(z∗, x)d(z∗, y) cos dΣ(x̄, ȳ), (4.15)

where z∗ ≡ Σ× {0} is called the cone vertex of C(Σ).

Lemma 4.7. Any cone metric gC is scaling invariant.

Example 4.1. Let (Σ, h) be a compact Riemannian manifold with diamh(Σ) ≤ π. The cone

metric of (C(Σ), dC , z∗) can be written by the warped Riemannian metric gC = dr2 + r2 · h
away from the cone tip z∗. As an exercise, one can prove the following Euclidean law of

cosine on (C(Σ), gC).
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Example 4.2. Let gC = dr2 + r2 · h be the cone metric of C(Σ). Show that L∂rg =
2
r
g.

Example 4.3. Prove that a metric cone C(Σ) is smooth everywhere if and only if C(Σ)

is flat which is equivalent to say the cross-section Σ is isometric to the round sphere of

curvature +1.

There are many examples of metric cones:

(1) Rn is the metric cone over the standard round sphere Sn−1.

(2) R+ is the metric cone over a point.

(3) The half plane R × R+ is the metric cone over the segment [0, π]. It can be viewed

as the quotient R2/Z2, where Z2 is generated by the reflection (x, y) 7→ (x,−y).
(4) Let Z+ be the group generated by the rotation (x, y) 7→ (−x,−y). Then R+/Z2 is

the metric cone over the circle S1 of perimeter π.

(5) The metric cone R4/Z2
∼= C(RP 3), where the quotient group Z2 is generated by the

involution ι : (x1, x2, x3, x4) 7→ (−x1,−x2,−x3,−x4).
Using the curvature equations, we can compute the curvature of the cross-section of C(Σ).

Example 4.4. Let (C(Σ), gC , z∗) be a metric cone over a compact manifold (Σ, h), where z∗
is the cone tip. Prove that away from the cone tip z∗, RicgC ≡ 0 iff Rich ≡ (n− 2)h, and gC
is flat iff sech ≡ +1.

Definition 4.3 (Spherical suspension). Let (Σ, dΣ) be a metric space of diameter ≤ π. A

metric space (Z, d) is called the spherical suspension (or spherical cone) over Σ, denoted by

Susp+1(Σ) ≡ C+1(Σ), if Z is homeomorphic to (Σ × [0, π])/(Σ × {0, π}) and the spherical

metric d is given by

cos d(x, y) = cos d(z∗, x) cos d(z∗, y) + sin d(z∗, x) sin d(z∗, y) cos dΣ(x̄, ȳ). (4.16)

Notice that, there are two vertices z∗ ≡ Σ×{0} and w∗ ≡ Σ×{π} on the spherical suspension

C+1(Σ).

Theorem 4.8. Let C(Z) be a metric cone over a compact Riemannian manifold (Z, h).

Assume that C(Z) is isometric to C(W ) × R. Then both Z and W are round spheres of

curvature +1. Moreover, Z is the spherical suspension over W .

Definition 4.4 (Hyperbolic suspension). Let (Σ, dΣ) be a metric space of diameter ≤ π. A

metric space (Z, d) is a called the hyperbolic suspension (or hyperbolic cone) over Σ, denoted

by Susp−1(Σ) ≡ C−1(Σ) if Z is homeomorphic to the topological cone (Σ× [0,∞))/(Σ×{0})
and the is given by

cosh d(x, y) = cosh d(z∗, x) cosh d(z∗, y)− sinh d(z∗, x) sinh d(z∗, y) cos dΣ(x̄, ȳ), (4.17)

where z∗ ≡ Σ× {0} is called the cone vertex of C−1(Σ).
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Example 4.5. Let Z ≡ Suspk(Σ) with k ∈ {−1, 1}. Show that secΣ ≡ 1 if and only if

secZ ≡ k.

Theorem 4.9 (Almost Volume Cone Implies Metric Cone, Cheeger-Colding 1996). Given

n ≥ 2 and ϵ > 0, there exists δ = δ(n, ϵ) > 0 such that the following holds. Let (Mn, g)

satisfy Ric ≥ −(n− 1)δ2 such that for some p ∈Mn

|Q2r(p)−Qr(p)| < δ. (4.18)

Then there exists a compact length metric space (X, dX) with diam(X) ≤ π such that

dGH(Br(p), Br(x∗)) < ϵ, Br(x∗) ⊂ C(X). (4.19)

Corollary 4.10. Let (Xn
∞, d∞) be a non-collapsed Ricci-limit space. Then all tangent cones

on Xn
∞ are metric cones.

Corollary 4.11. For any n ≥ 2 and ϵ > 0, there exists δ(n, ϵ) > 0 such that if (Mn, g, p)

satisfies Ricg ≥ −(n− 1) and

|Volg(B2(p))− Vol0(B2(0
n))| < δ, (4.20)

then

dGH(B1(p), B1(0
n)) < ϵ. (4.21)

Corollary 4.12 (Uniqueness). Let (X, d) be a non-collapsed Ricci-limit space. If a point

p ∈ X has a tangent cone Rn, then every tangent cone at x is isometric to Rn.

Theorem 4.13 (Cheeger-Colding 1997). Let (Mn
j , gj, pj) be a sequence of Riemannian man-

ifolds with Ricgj ≥ −(n− 1)gj and Volgj(B1(pj)) ≥ v > 0. Then there exists a length metric

space (X∞, d∞, p∞) such that the following holds.

(1) dimH(X∞) = n.

(2) Passing to a subsequence,

(Mn
j , gj, pj)

GH−−→ (X∞, d∞, p∞) and Volgj(BR(pj)) → Hn(BR(p∞)). (4.22)

(3) The singular set S of Xn
∞ admits the stratification S = Sn−2 and dimH(Sk) ≤ k.

Definition 4.5. Let (X, d) be a Ricci-limit space. We define

R ≡ {x ∈ X : every tangent cone at x is isometric to Rn} . (4.23)

The set S ≡ X \ R is called the singular set of X.

Definition 4.6 (Classical stratification). Let (X, d) be a Ricci-limit metric space. We define

Sk ≡
{
x ∈ X : no tangent cone at x isometrically splits off Rk+1

}
. (4.24)
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Lemma 4.14. Let (Xn, d) be a non-collapsed Ricci-limit space. Then it holds that

S0 ⊂ S1 ⊂ . . . ⊂ Sn−1 = S. (4.25)

That is, S \ Sn−1 = ∅.

Theorem 4.15 (Cheeger-Colding 1997). Let (Mn
j , gj, pj)

GH−−→ (Xn
∞, d∞, p∞) be a non-collapsing

sequence with |Ricgj | ≤ n − 1. Then Xn
∞ \ S is a smooth manifold equipped with a C1,α-

Riemannian metric.

Theorem 4.16 (Cheeger 2003). Let (Mn
j , gj, pj) be a sequence satisfying Ricgj ≥ −(n− 1),

Volgj(B1(pj)) ≥ v > 0, and
ˆ
B2(pj)

|Rmgj |p ≤ Λ, (4.26)

such that (Mn
j , gj)

GH−−→ (Xn
∞, d∞). Then dimH(S) ≤ n − 2p. In particular, in the Kähler

case, dimH(S) ≤ n− 4.

Theorem 4.17 (Codimension-4 Regularity, [?]). Let (Mn
j , gj, pj)

GH−−→ (Xn
∞, d∞, p∞) be a

non-collapsing sequence with |Ricgj | ≤ n− 1. Then S = Sn−4.

Corollary 4.18. Let (Xn
∞, d∞) be a non-collapsed Einstein limit. Then there exists a closed

subset S ⊂ Xn
∞ such that Xn

∞ \ S admits a smooth Einstein metric g∞ with dg∞ = d∞.

Theorem 4.19 (Cheeger-Naber’s Diffeomorphism Finiteness Theorem, 2015). Given v > 0,

D > 0, and κ > 0, there exists N(v,D, κ) > 0 such that the class

MRic(4, v,D, κ) ≡
{
(M4, g) : |Ricg | ≤ κ, diamg(M

4) ≤ D, Volg(M
4) ≥ v > 0

}
(4.27)

has at most N diffeomorphism types. As a corollary,ˆ
M4

|Rmg |2 ≤ C(v,D, κ) (4.28)

for any manifold (M4, g) ∈ MRic(4, v,D, κ).

Definition 4.7 (Quantitative stratification). Given 0 ≤ k ≤ n− 2 and ϵ > 0, we define

Skϵ ≡
⋂
r>0

Skϵ,r ≡ {x ∈ B1(p) : for no r ∈ (0, 1) is Br(x) a (k + 1, ϵ)-symmetric ball} . (4.29)

Theorem 4.20 (Jiang-Naber 2018). For any n ≥ 2 and v > 0, there exists C(n, v) > 0 such

that the following holds. If (Mn, g, p) satisfies |Ricg | ≤ n− 1, Volg(B1(p)) ≥ v > 0, then 
B1(p)

|Rmg |2 ≤ C. (4.30)
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Theorem 4.21 (Cheeger-Jiang-Naber 2021). Let (Mn
j , gj, pj)

GH−−→ (Xn
∞, d∞, p∞) satisfy

Volgj(B1(pj)) ≥ v > 0, Ricgj ≥ −(n− 1)gj. (4.31)

Then Sk is k-rectifiable and for Hk-a.e. x ∈ Sk, every tangent cone at x is k-symmetric.

Theorem 4.22 (ϵ-Stratification and manifold structure). Let (Mn
j , gj, pj)

GH−−→ (Xn
∞, d∞, p∞)

satisfy Volg(B1(pj)) ≥ v > 0 and Ricgj ≥ −(n − 1). Then for any ϵ > 0, there exists

Cϵ = Cϵ(n, v, ϵ) > 0 such that

Vol(Tr(Skϵ (X)) ∩B1(p∞)) < Cϵ · rn−k. (4.32)

In particular, Hk(Skϵ ∩B1(p∞)) ≤ Cϵ. Moreover, the following holds:

(1) the set Skϵ is k-rectifiable, and for Hk-a.e. x ∈ Skϵ every tangent cone at x is k-

symmetric.

(2) Xn \ Sϵ is bi-Hölder homeomorphic to a smooth manifold, where Sϵ ≡
n−2⋃
k=0

Skϵ .

5. Collapsing Manifolds with Bounded Curvature

Fundamental structures in the geometry of collapsing manifolds with bounded curvature

include the nilpotent fibration structure and Cheeger-Fukaya-Gromov’s nilpotent Killing

structure. In this section, we will apply Cheeger-Colding’s harmonic splitting map to con-

struct a fibration whose collapsing fibers are almost flat manifolds.

5.1. An example. Let us first discuss an elementary example of product manifold.

Theorem 5.1. Let (Mn, g) be a complete Riemannian manifold. Then there exists a full

measure subset R in Mn×Mn with respect to the product measure such that for any (p, q) ∈
R, there exists a unique minimal geodesic connecting p and q.

The following lemma is also standard.

Lemma 5.2. Let p = (x1, y1) and q = (x2, y2) be any points on the product manifold (Mn×
Nk, g ⊕ h). Then

d2g⊕h(p, q) = d2g(x1, x2) + d2h(y1, y2). (5.1)

Example 5.1. Now we consider a special case of Riemannian product. Let (Xn, g) be a

Riemannian manifold. We define the Riemannian product Y n+1 ≡ R × Xn with a natural

coordinate system (t, x). We define a function h(t, x) ≡ t. Then one can check that

|∇h| ≡ 1, |∇2h| ≡ 0. (5.2)

We take three points z, x, w ∈ Y n+1 such that h(x) = 0 and w is the orthogonal projection

of z onto the fiber Xn×{0}. In particular, h(w) = 0 as well. Let d0 ≡ d(z, w). We will prove
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that d2(z, x) = d2(z, w) + d2(x,w). NOTE: we will always work with the “regular points” as

described in Theorem 5.1.

Let σ : [0, d0] → Y n+1 be the unique minimal geodesic connecting w and z. For any

s ∈ [0, d0], there exists a geodesic τs : [0, ℓ(s)] → Y n+1 with τs(0) = x and τs(ℓ(s)) = σ(s).

Then we have that

d2(z, w) = d20 = 2

ˆ d0

0

sds

= 2

ˆ
I

(h(σ(s))− h(σ(0)))ds

= 2

ˆ
I

(h(τs(ℓs))− h(τs(0)))ds

= 2

ˆ
I

ˆ ℓs

0

⟨∇h(τs(t)), τ ′s(t)⟩dtds. (5.3)

Next, we show that ⟨∇h, τ ′s⟩ is constant along the geodesic τs. In fact, for any t ∈ [0, s]∣∣∣⟨∇h(τs(t)), τ ′s(t)⟩ − ⟨∇h, τ ′s(t)⟩(τs(ℓs))
∣∣∣ = ∣∣∣ˆ s

t

⟨∇τ ′s(u)∇h, τ
′
s(u)⟩du

∣∣∣ ≡ 0. (5.4)

Therefore,

d2(z, w) = 2

ˆ
I

ˆ ℓs

0

⟨∇h, τ ′s⟩(σs)dtds = 2

ˆ
I

ℓs⟨σ′, τ ′s⟩(σ(s))ds. (5.5)

Applying the first variation formula, d
ds
ℓs = ⟨σ′, τ ′s⟩, which implies that

d2(z, w) = 2

ˆ
I

ℓsℓ
′
sds = 2

ˆ d0

0

ℓsℓ
′
sds = ℓ2(d0)− ℓ2(0) = d2(x, z)− d2(x,w). (5.6)

5.2. Isometric splitting and quantitative splitting.

Definition 5.1 (Killing field). Let (Mn, g) be a Riemannian manifold. A vector field X is

called a Killing field if and only if its flow acts on Mn by isometries.

Lemma 5.3. A vector field X on (Mn, g) is Killing iff LXg ≡ 0.

Lemma 5.4 (Splitting Lemma). Let (Mn, g) be a complete Riemannian manifold. (Mn, g)

is isometric to the Riemann product if and only if there exists a function f ∈ C2(Mn) that

satisfies |∇f | ≡ 1 and |∇2f | ≡ 0.

Proof. We only prove the “only if” part. First, Mn is non-compact since otherwise ∇f = 0

when f attains the maximum. Next, we will show that ∇f is a Killing field. To see this,
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taking any vector fields Y, Z ∈ X(Mn),

(L∇fg)(Y, Z) = ∇f(g(Y, Z))− g([∇f, Y ], Z)− g(Y, [∇f, Z])
= g(∇Y∇f, Z) + g(Y,∇Z∇f)
= 2∇2f(Y, Z) ≡ 0. (5.7)

Notice that df(∇f) = |∇f |2 ≡ 1, which implies f : Mn → R is submersion. It follows that

Nn−1 ≡ f−1(0) is a (totally geodesic) submanifold.

Now we define a map Φ : N × R →Mn by Φ(x, t) ≡ γx(t), where γx is the integral curve

of ∇f at x. Since ∇f is a Killing field, Φ(x, t) is an isometry. □

Definition 5.2 (Upper barrier function). Let (Mn, g) be a Riemannian manifold, let U be

an open neighborhood of p ∈ Mn. For any f ∈ C0(U), a function gp ∈ C2(U) is said to be

an upper barrier function of f at p if

gp(p) = f(p), f(x) ≤ gp(x), ∀x ∈ U. (5.8)

Definition 5.3 (Weak derivative). Let f : (a, b) → R be continuous. We say f ′′(t0) ≤ λ in

the sense of barrier function for some t0 ∈ (a, b) if for any ϵ > 0, there exists some barrier

function gϵ of f at t0 such that g′′ϵ (t0) ≤ λ+ ϵ.

Definition 5.4. Let (Mn, g) be a Riemannian manifold and f ∈ C0(Mn) and let p ∈ Mn.

If (f ◦ γ)′′ ≤ λ holds in the barrier sense for any geodesic γ starting from p, then we say

∇2f ≤ λ · Id holds in the barrier sense on Mn.

Theorem 5.5 (Calabi-Hopf’s strong maximum principle). Let f ∈ C0(Mn) satisfy ∆f ≤ 0

in the barrier sense. Then f is local constant at a local minimum, and f is a constant if f

has a global minimum.

Theorem 5.6 (Cheeger-Gromoll). Let (Mn, g) be a complete non-compact Riemannian man-

ifold with Ricg ≥ 0. If (Mn, g) admits a line, then Mn is isometric to the Riemann product

Rk ×N for some k ∈ Z+, where N is a Riemannian with RicN ≥ 0 and contains no line.

To prove the theorem, we need a few preliminary results.

We define the Busemann function as follows. Let γ : [0,∞) →Mn be a ray with γ(0) = p.

For any t ≥ 0, we define

btγ(x) ≡ t− d(x, γ(t)), x ∈Mn. (5.9)

Then the following properties hold.

(1) btγ(x) ≤ d(p, x).

(2) btγ is 1-Lipschitz, i.e.,

|btγ(x)− btγ(y)| ≤ dg(x, y). (5.10)
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(3) btγ(x) is increasing in t.

By Arzelà-Ascoli, the limiting function bγ ≡ lim
t→+∞

btγ, called the Busemann function de-

termined by γ, is well-defined and bγ is also 1-Lipschitz.

Lemma 5.7. Let (Mn, g) be a complete non-compact Riemannian manifold with Ricg ≥ 0.

Let γ : [0,∞) → Mn be a ray. Then the Busemann function bγ satisfies ∆bγ ≥ 0 in the

barrier sense.

Proof. First, we describe the construction of the barrier function. Given q ∈ Mn, we pick

a sequence ti → +∞ and we pick a sequence of minimizing geodesic σi connecting q and

γ(ti). By the compactness of Sn−1, {σ′
i(0)} has a converging subsequence which converges

to a limiting vector v. Then σ(t) ≡ Expq(tv) gives a ray starting from q ∈Mn.

Let us choose a function

btγ,q(x) ≡ bγ(q) + t− dg(x, σ(t)). (5.11)

First, we prove the following properties.

(1) btγ,q is a lower barrier function of bγ at q.

(2) btγ,q is smooth at q when t > 0.

Since bγ is 1-Lipschitz,

btγ,q(x) = bγ(q) + t− dg(x, σ(t)) = bγ(σ(t))− dg(x, σ(t)) ≤ bγ(x). (5.12)

This completes the proof of item (1). To show item (2), observe that σ is a ray, and hence

q is not in the cut locus of σ(t). Then the distance function dσ(t) is smooth around q, which

completes the proof of item (2).

Next, by Laplacian comparison, for any t > 0,

∆btγ,q(q) = −∆d(σ(t), q) ≥ − n− 1

d(σ(t), q)
= −n− 1

t
. (5.13)

Therefore, ∆bγ(q) ≥ 0 holds in the barrier sense. □

Proof of Theorem 5.6. We write the line γ ⊂Mn with γ(0) = p as the union of the two rays

γ ≡ γ− ∪ γ+. Let us denote b+ ≡ bγ+ and b− ≡ bγ− . The main point is to show that b+ and

b− satisfy

|∇b±| ≡ 1, |∇2b±| ≡ 0. (5.14)

First, by definition, (b+ + b−)(γ(s)) = 0 for any s ∈ (−∞,∞). Moreover, by triangle

inequality, one can check that (b+ + b−)(x) ≤ 0 for any x ∈Mn. Applying Lemma 5.7,

∆(b− + b+) ≥ 0 (5.15)

holds in the barrier sense. It follows from the Calabi-Hopf maximum principle (Theorem

5.5) that (b+ + b−)(x) = 0 for any x ∈ Mn. Therefore, both b+ and b− are harmonic.
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Immediately, b+ and b− are both smooth on Mn. It follows that |∇b±| ≡ 1. Next, applying

Bochner’s formula

0 =
1

2
∆|∇b±|2 = |∇2b±|2 +Ric(∇b±,∇b±). (5.16)

Combining with the curvature assumption Ricg ≥ 0, we conclude that |∇2b±| ≡ 0. □

Theorem 5.8. Let (Mn, g) be a closed Riemannian manifold with Ricg ≥ 0. Then up to

a finite cover, Mn is diffeomorphic to Tk × Nn−k. In particular, π1(M
n) is virtually free

abelian.

5.3. Fibration theorems. In the theory of collapsing manifolds with bounded curvature,

the first first milestone theorem is Gromov’s Almost Flat Manifolds Theorem.

Theorem 5.9 (Gromov 1978). For any n ≥ 2, there exist constants ϵ = ϵ(n) > 0 and

w = w(n) such that if (Mn, g) satisfies

diamg(M
n
j )

2 ·max
Mn

| secgj | ≤ ϵ, (5.17)

then there exists a finite normal covering space M̂n, of index bounded by w(n), which is

diffeomorphic to a nilmanifold.

In 1987, Fukaya proved a fibration theorem for collapsing manifolds with bounded curva-

true, where the limit spaces are assumed to be smooth.

Theorem 5.10 (Fukaya 1987). Let (Mn
j , gj) satisfy | secgj | ≤ 1 and (Mn

j , gj)
GH−−→ (Y k

∞, g∞),

where the limit is a smooth Riemannian manifold. Then there exists a large J0 ∈ Z+ such

that the following holds for any j ≥ J0:

(1) there exists a fiber bundle Nn−k
j →Mn

j

Fj−→ Y k;

(2) if dGH(M
n
j , Y

k
∞) ≤ ϵj → 0, then diam(Fj) ≤ τ(ϵj) with lim

j→∞
τ(ϵj) = 0;

(3) there exists a uniform constant C0 > 0 such that | IINn−k
j

| ≤ C0.

(4) Fj is an almost Riemannian submersion, in the sense that for any vector v orthogonal

to the fiber of Fj, we have

(1− τj)|v|gj ≤ |dFj(v)|g∞ ≤ (1 + τj)|v|gj . (5.18)

In particular, Nn−k
j is almost flat and hence diffeomorphic to an infranilmanifold.

Two years later, Fukaya was able to treat general limit spaces and managed to construct

a singular fibration for collapsing manifolds with bounded curvature.
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Theorem 5.11 (Fukaya 1989). Let (Mn
j , gj)

GH−−→ (Xk
∞, d∞) satisfy k < n and | secgj | ≤ 1.

Then one has the following equivariant convergence diagram:

N̂

��

// (F (Mj), O(n))

πj

��

eqGH
// (Y∞, O(n))

π∞

��
N // (Mn

j , gj)
GH // (X∞, d∞)

and there exists a singular fibration N → Mj → X∞ with N as its generic fiber, where Y∞
is smooth manifold equipped with a C1,α-Riemannian metric, N̂ is a nilmanifold, and N is

finitely covered by a nilmanifold.

In the following, we will use Cheeger-Colding’s harmonic splitting map to prove Theorem

5.10.

Theorem 5.12 (Cheeger-Colding’s harmonic splitting map). Given any ϵ > 0 and n ≥ 2,

there exists some δ = δ(n, ϵ) > 0 such that the following holds. If (Mn, g, p) is a Riemannian

manifold satisfying Ricg ≥ −(n− 1)δ and dGH(B4(p), B4(0
d)) < δ, B4(0

4) ⊂ Rd, then there

exists a harmonic map

Φ = (u(1), . . . , u(d)) : B2(p) → Rd

such that the following properties hold:

(1) Φ : B2(p) → B2(0
d) ⊂ Rd is an ϵ-Gromov-Hausdorff approximation;

(2) |∇u(α)|(x) ≤ 1 + ϵ holds for any x ∈ B2(p) and 1 ≤ α ≤ d;

(3) The following estimate holds

d∑
α,β=1

 
B2(p)

|⟨∇u(α),∇u(β)⟩ − δαβ| dvolg +
d∑

α=1

 
B2(p)

|∇2u(α)|2 dvolg < ϵ.

We will also need a good cutoff function with uniform derivative estimates. Here we briefly

review the standard heat flow regularization, and we refer to Lemma 3.1 of [?] for results on

general RCD spaces.

Lemma 5.13. Let (Xn, g) be a Riemannian manifold with Ricg ≥ 0. Assume that for any

m ∈ N, there exists a constant Λm > 0 such that |∇mRmg | ≤ Λm uniformly on X. Then for

any p ∈ X and r ∈ (0, 1] with B2r(p) compact, there exists a cut-off function ψ : Xn → [0, 1]

which satisfies the following properties

(1) ψ ≡ 1 on Br(p) and ψ ≡ 0 on X \B2r(p).

(2) For any m ∈ Z+, there exists a constant C = C(m,n) > 0 such that rm|∇mψ| ≤ C.
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Proof. Without loss of generality suppose r = 1. The proof below can be made purely local,

but to simplify notations we assume X is complete. For any q ∈ X, we first take a cutoff

function ρ defined by

ρ(y) =


1, y ∈ Bg

1(q),

2− dgj(y, q), y ∈ Ag1,2(q),

0, y ∈ X \Bg
2(q).

For t > 0, consider the heat flow ψt ≡ Ht(ρ) of the 1-Lipschitz cutoff function ρ. It is

standard that on X we have the pointwise estimate |∇gψt|2 + 2t
n
(∆gψt)

2 ≤ 1. Then for all

y ∈ X, we have

|ψt(y)− ρ(y)| ≤
ˆ t

0

|∆gψs(y)|ds ≤
√
2nt.

Now fix τ = 1
18n2 . Then ψτ (y) ∈ [2

3
, 1] for y ∈ B1(q) and ψτ (y) ∈ [0, 1

3
] for y ∈ X \B2(q).

Next, we choose a smooth cutoff function h : [0, 1] → [0, 1] which satisfies

h(s) =

{
1, 2

3
≤ s ≤ 1,

0, 0 ≤ s ≤ 1
3
,

and set ψ = h ◦ ψτ . Since ψt solves the heat equation, the higher order derivative estimate

of ψ follows from the standard parabolic estimate. □

Theorem 5.14 (Regular fibration). Let (Mj, gj)
GH−−→ (M∞, g∞) be a converging sequence

that satisfies |∇k Rmgj | ≤ Ck and M∞ is smooth. Let Q be a connected compact domain in

M∞ and let ∂Q be smooth. Then we can find j0 = j0(Q) > 0 and a sequence τj → 0, such

that for all j ≥ j0, there exist a compact connected domain Qj ⊂ X4
j with smooth boundary,

together with a smooth fiber bundle map Fj : Qj → Q such that the following properties hold.

(1) Fj : Qj → Q is a τj-Gromov-Hausdorff approximation;

(2) For any k ∈ Z+, there exists Ck > 0 such that for all j ≥ j0, we have

|∇kFj| ≤ Ck; (5.19)

(3) There exists a uniform constant C0 > 0 such that for all q ∈ Q and j ≥ j0, we have

| IIF−1
j (q) | ≤ C0,

where IIF−1
j (q) denotes the second fundamental form of the fiber F−1

j (q) at q ∈ Q.

(4) Fj is an almost Riemannian submersion, in the sense that for any vector v orthogonal

to the fiber of Fj, we have

(1− τj)|v|gj ≤ |dFj(v)|g∞ ≤ (1 + τj)|v|gj ; (5.20)
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(5) There are flat connections with parallel torsion on F−1
j (q), which depend smoothly on

q ∈ Q, such that each fiber of Fj affine diffeomorphic to an infranilmanifold Γ \ N ,

where N is a simply-connected nilpotent Lie group, and Γ is a cocompact subgroup of

NL ⋊Aut(N) with NL ≃ N acting on N by left translation. Moreover, the structure

group of the fibration is reduced to ((Z(N) ∩ Γ) \ Z(N))⋊ Aut(Γ) ⊂ Aff(Γ \N);

(6) Λ ≡ Γ∩NL is normal in Γ with #(Λ \ Γ) ≤ w0 for some constant w0 independent of

i.

Proof of Theorem 5.14. We adopt the notation in the setting of Theorem 5.14. By a simple

rescaling, we can assume injradg∞(q) ≥ 10 for any q ∈ Q. To begin with, we fixe ϵ > 0

sufficiently small, and define the rescaled Riemannian metric hϵ ≡ ϵ−1 ·g∞ on R. Throughout

the proof we will denote by τ(ϵ) a general function of ϵ satisfying limϵ→0 τ(ϵ) = 0. Now for

any q ∈ Q, there is a harmonic coordinate system

ϖq ≡ (w1, . . . , wd) : B
hϵ
5 (q) → B5(0

d),

such that

(i) ∆hϵwα = 0 for any 1 ≤ α ≤ d,

(ii) |hϵ,αβ − δαβ|C0(B4(q)) + |∂wγhϵ,αβ|C0(B4(q)) ≤ τ(ϵ),

where hϵ,αβ ≡ hϵ(∇hϵwα,∇hϵwβ). In particular, we have dGH(B
hϵ
4 (q), B4(0

d)) < τ(ϵ), where

0d ∈ Rd.

In the following, we will also work with the rescaled metrics hi ≡ ϵ−1 · gi on X4
i . Unless

otherwise specified, the metric balls below will be measured in terms of hi and hϵ, respectively.

We will prove the theorem in three steps. In the first step, using the harmonic splitting

map, we will construct local fiber bundle maps over every ball in Q which looks like a ball

in Rd. The second step is to glue the local fiber bundle maps by the well-behaved partition

of unity. In the last step, we will show the desired estimates and identify the topology of the

collapsing fibers.

Step 1 (construction of local fiber bundles).

Let {q
ℓ
}Nℓ=1 be a subset of Q such that Q ⊂

N⋃
ℓ=1

B1(qℓ) ⊂ R, and for all 1 ≤ ℓ, ℓ′ ≤ N with

ℓ ̸= ℓ′, we have dhϵ(qℓ, qℓ′) >
1
2
. For every 1 ≤ ℓ ≤ N , let qi,ℓ ∈ X4

i such that (B4(qi,ℓ), hi)
GH−−→

(B4(qℓ), hϵ). Then for any sufficiently large i, we have dGH(B4(qi,ℓ), B4(0
d)) < 2τ(ϵ). Then

there exists a harmonic map

Φ∗
i,ℓ = (u

(1)
i,ℓ , . . . , u

(k)
i,ℓ ) : B3(qi,ℓ) → Rd
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which satisfies the following integral estimates

d∑
α,β=1

 
B3(qi,ℓ)

|hi(∇hiu
(α)
i,ℓ ,∇hiu

(β)
i,ℓ )− δαβ|+

d∑
α=1

 
B3(qi,ℓ)

|∇2u
(α)
i,ℓ |

2
hi
≤ τ(ϵ).

Since (B4(qi,ℓ), hi) is collapsing with uniformly bounded geometry, the above integral es-

timate can be strengthened to the following pointwise estimate on B2(qi,ℓ):

k∑
α,β=1

|gi(∇u(α)i,ℓ ,∇u
(β)
i,ℓ )− δαβ|+

k∑
α=1

|∇2u
(α)
i,ℓ |

2 ≤ τ(ϵ).

This implies that, for every 1 ≤ ℓ ≤ N , the composition

Φi,ℓ ≡ (ϖℓ)
−1 ◦ Φ∗

i,ℓ : B2(qi,ℓ) → B2(qℓ)

is a fiber bundle map, where the diffeomorphism ϖℓ : B2(qℓ) → B2(0
d) is given by the

harmonic coordinate system at q
ℓ
. Moreover, Φi,l is a τ(ϵ)-Gromov-Hausdorff approximation

for all i large.

Step 2 (gluing local bundle maps).

Let us take domains with smooth boundary Qi ⊂
N⋃
ℓ=1

B2(qi,ℓ) such that (Qi, hi)
GH−−→

(Q, hϵ). We will glue the above local harmonic maps to obtain a fiber bundle map Fi : Qi →
Q.

For every 1 ≤ ℓ ≤ N , let ψℓ be the good cut-off function in Lemma 5.13 such that

ψℓ(y) =

{
1, y ∈ B1(qi,ℓ),

0, y ∈ X4
i \B2(qi,ℓ),

and for all m ∈ Z+, |∇mψℓ| ≤ Cm holds everywhere on M4
i . Then we take the partition of

unity subordinate to the cover {B2(qi,ℓ)}Nℓ=1 of Qi given by

ϕℓ ≡ ψℓ(
N∑
ℓ=1

ψℓ)
−1.

It follows from volume comparison that the multiplicity in the above cover is bounded by

some absolute constant Q0 > 0. We denote Bi ≡
N⋃
ℓ=1

B2(qi,ℓ) and B∞ ≡
N⋃
ℓ=1

B2(qℓ). For any

1 ≤ ℓ ≤ N , we define

dϵ(x, y) ≡
d∑

α=1

|wα(x)− wα(y)|2,
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which is determined by the harmonic coordinate system on B2(qℓ). It follows from the

estimates on the harmonic coordinates that |dϵ − d2hϵ| ≤ τ(ϵ) holds on B2(qℓ). Then let us

define the energy function E : Bi × B∞ → (0,∞) by

E(qi, q∞) ≡ 1

2

N∑
ℓ=1

ϕℓ(qi) · dϵ
(
Φi,ℓ(qi), q∞

)
.

By convexity, for any qi ∈ Bi, the function E(qi, ·) : B∞ → [0,∞) has a unique minimum

z(qi). It is straightforward to verify that for any qi ∈ B2(qi,ℓ),

dhϵ

(
z(qi),Φi,ℓ(qi)

)
< τ(ϵ),

and ∣∣∣hi(∇hiF
(α)
i ,∇hiF

(β)
i )− hi(∇hiu

(α)
i,ℓ ,∇hiu

(β)
i,ℓ )
∣∣∣ ≤ τ(ϵ).

Then we define the map

Fi : Bi → B∞, qi 7→ z(qi), ∀ qi ∈ Bi.

Combining the above estimates on the harmonic splitting maps, harmonic coordinates, as

well as the good cut-off functions, we conclude that Fi is a fiber bundle map. Moreover,

Fi : Bi → B∞ is a τ(ϵ)-Gromov-Hausdorff approximation. Therefore, the proof of item (1)

is complete by taking ϵ→ 0 and i→ ∞.

Step 3 (proof of the higher order regularity estimates).

In this step, we will rescale everything back to the original metrics gi and g∞, respectively.

Notice that the uniform estimates for the higher derivatives of the good cut-off functions

(constructed in Lemma 5.13) hold in our case, and the higher order estimates for the splitting

maps Φi,ℓ and the harmonic coordinates on Q hold as well. Then we obtain the pointwise

estimate on the second fundamental form in item (2) and the higher order estimate ∇kFi in

item (3). We skip the details.

We will prove item (4) by contradiction. Assume that there exist a sequence ηi → 0, a

constant τ0 > 0, and a sequence of bundle maps Fi : Qi → Q which are ηi-Gromov-Hausdorff

approximations such that for all sufficiently large i,∣∣∣ |dFi(v)|g∞|v|gi
− 1
∣∣∣ ≥ τ0 (5.21)

holds for a sequence of vectors vi ∈ TxiQi orthogonal to the fiber of Fi. We assume |v|gi = 1.

We take the universal cover of Br0(xi) for some sufficiently small constant r0 > 0, which
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gives the following equivariant Ck-convergence for any k ∈ Z+:

(B̃r0(xi), g̃i,Γi, x̃i)

πi

��

Ck
// (B̃∞, g̃∞,Γ∞, x̃∞)

π∞

��
(Br0(xi), gi)

GH // (Br0(x∞), g∞),

where πi : (B̃r0(xi), x̃i) → (Br0(xi), xi) is the Riemannian universal cover with πi(x̃i) = xi,

Γi ≡ π1(Br0(xi)), and Γ∞ is a closed subgroup in Isomg̃∞(B̃∞). The above diagram of

equivariant convergence implies that π∞ : B̃∞ −→ Br0(x∞) = B̃∞/Γ∞ is a Riemannian

submersion. Let F̃i ≡ Fi ◦ πi and ṽi be the lift of vi to x̃i. Then the Ck convergence implies

that F̃i converges to π∞, and ṽi converges to a limiting vector ṽ∞ with |dπ∞(v∞)|g∞ = 1.

This contradicts (5.21), which completes the proof of item (4).

Based on the Gromov-Hausdorff estimate in item (1) and the second fundamental form

estimate in item (3), we can conclude that all the fibers of Fi are almost flat manifolds in

the sense that

diam(F−1
i (q))2 · | secF−1

i (q) | < τ(ϵ), ∀q ∈ Q,

for any sufficiently large i. If ϵ is chosen sufficiently small, then item (5) and (6) follows from

Gromov and Ruh’s theorems on the almost flat manifolds and Fukaya’s fibration theorem;

see [Gro81, Ruh82, Fuk89, CFG92]. □
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6. Selected Results in Collapsing Einstein Manifolds

Some selected topics:

(1) ϵ-regularity in 4D; Margulis lemma

(2) Quantitative Margulis Lemma; ϵ-regularity in higher dimensions

(3) First Betti number and almost nonnegative Ricci curvature; parametrized version

(4) Collapsing Einstein manifolds with special holonomy; examples
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