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1.1 Large deviation principle

Let (X;)ien be i.i.d. random variables defined on a probability space (Q, F,P) such that EX; =0
and VarX; = 1. Let S, = n='>)" | X; and p, denote the distribution of S, for n € N. For
example, consider X; ~ A(0,1). Then S,, ~ N(0,1/n) and

P(|S,| = ¢ efyZ/zdy )

9 [t®
=T
Similarly for 0 < £ < ¢/, we have

P(|Sn| € [g,fl]) = e_én-‘ro(n).

It is natural to ask if X is a general random variable with measure p, what should we put on
the r.h.s. 7 Motivation: for measure p, what is the following 17

P(|Sn| € [E,fl]) = 671(5)n+0(n)' (1)

Definition 1.1. We say that p,, satisfies an LDP with a rate function I if I : R — [0, +0]
is lower semicontinuous and, for all Borel sets B < R, we have

log i (B
— inf I(z) < liminf 108 41n (B) (lower bound)
zeBO n—+00 n
log i (B
— inf I(z) > limsup 108 j1n (B) (upper bound).
zEB n—+0 n

Here, B° and B denote the interior and the closure of B. Recall that I is lower-semicontinuous if
the sublevel set {I < a} is closed for any o < +00. This condition is equivalent to liminf,_,, I(y) >
I(x) for any x € R.

Remark: it may take a while to understand this form. Here is the equivalent expressions, which
is very useful for me

6_(infmeB I(m))'n+o(”) > ,LLn(B) 2 e_(infa:eBO I(z))'n-‘r()(n)

Note: you have to use B in Lh.s, and use B® in Lh.s



The definition of LDP can be given for sequences of measures on arbitrary topological spaces.
I will refer to LDP for measures on Euclidean spaces below.

There are many basic properties of LDP in Prof. Varadhan, which some one can
introduce to us in the future.
The answer to :

1
1(6) = sup (30— log ) = sup {3 Liogme())
AeR AER n

where p is measure of X; and f,, is measure of }}, X;.

A useful tool to establish LDP is Géartner-Ellis theorem. We consider the following
setup. Let (Z,)nen be a sequence of random vectors in R?. Let 1, denote the distribution of Z,.
Consider the log-moment generating function A, ()\) = log E[e*%] for A € R?. We assume that
the following conditions hold:

1. The limit A(\) = lim,, ;o n A, (n)) € (—00, +00] exists.
2. 0e DY, where Dy = {A e R : A()\) < o0}.
3. A is differentiable on D.

4. (Steepness condition) For any x € 0Dp, lim y—,, |[VA(N)| = +0c0.
XeDY
Theorem 1.1 (Gértner-Ellis theorem). Under assumptions (a)-(d), (un) satisfy an LDP with
convez, good (i.e. sublevel sets are compact) rate function A*, the Legendre-Fenchel transform of
A given by

A*(z) = Asu]é)d’{)\ cz— AN}

This theorem, in fact, a special case of the Gartner-Ellis theorem; see, for example, [I], [2] for
the full theorem and its proof.
Example: Sum of i.i.d. random variables.

1.2 Application to the Markov chains

We now present an application of this theorem to the Markov chains in discrete time with finite
state space. We introduce some notation first. The state space is [N] = {1,...,N}. Let II =
[7(,7)]i jern) be a stochastic matrix, that is, w(i,j) > 0 and };; 7(4, j) = 1 for each i € [N]. Let
PT denote the Markov probability measure with transition matrix IT and initial state at o € [N].
Let Y,, denote the state the chain visits at time n. We have

PIYi=y1,.... Yo =yn) = 7(o,y0)7(y1,92) - - - T (Yn—1,Yn)

for any path (y1,...,yn) in the state space. We assume that II irreducible; this means that for
each (i,j), there exists m(i,j) € N such that TI™7) (i, j) > 0.

Our goal is to obtain an LDP for random variables Z,, = n=' Y. | f(Y;), where f: [N] — R?
is a given function.

For the computation A, the limiting log-moment generating function, we will utilize the fol-
lowing result. For a vector u, we will write u » 0 if all components of u are positive.

Theorem 1.2 (Perron-Frobenius). Let B = [B(1, j)]; je[n] be an irreducible matriz with positive
entries. Then B has a real eigenvalue p (called the Perron-Frobenius eigenvalue) with the following
properties.

(i) |\ < p for any eigenvalue of B.



(i) There exist a left eigenvector u and a right eigenvector v corresponding to p such that u > 0
and v » 0.

(iii) p has multiplicity 1.
(iv) For all i€ [N] and ¢ » 0, we have

i, 7 og

ZB"Z] 1 log p.
i=1

Z B"(i,5)¢ 1 = lim log
n—+w N
Jj=1

Proof of (iv). Let ¢ = min; ¢;/min; v;, where v is the right eigenvector corresponding to p. We
have

N N
2 B"(i,j 2 (4, 7)vjc = cp™v;
i=1 i=1

Taking logarithms, dividing through by n and letting n — 400 yields

n—+w N

11m1nf — log [Z B"(i,5)¢ 1 log p.

We similarly obtain that the limsup is bounded by log p. O

Theorem 1.3. For Markov chain, random variables Z,, = n~*> " | f(Y;) satisfy LDP with a rate
function I(x) with

I(xz) = sup {\ -z —log p(II)}
AeR?

where Iy = [mx(i, )] je[n) defined by mx(i, j) = (i, j)er/ )
Proof: 'We now turn to LDP for the Markov chain (Y,,). We have

Angﬂ) —log E7 lexp <Z A f( )>

=1

1
— log Z exp (Z)\ : f(%‘)) nw(yiflayi)
| (y1,-yn)E[N]™ i i

:%log > ]_[wyz 1 yi)er )

| (W1,--yn)€[N]"

where yo = 0. We observe that the matrix ITy = [ (4, j)]; je[n] defined by mx (i, j) = (i, j)e* /@)
has positive entries and is irreducible because it is obtained from such a matrix IT by multiplying
each entry with a positive number. Hence,

A ( 1og[2 11} (0, yn 1 — log p(I1,)

Yn=1

as n — 400, by the Perron-Frobenius theorem (applied with ¢ = (1,...,1)). Since the Perron-
Frobenius eigenvalue is positive, we have A(\) = log p(IT) € (—00, +00) for all A € R%. Hence, (a),
(b) hold and (d) is vacuously true. To check differentiability of A, we consider the characteristic
equation

0 =detlzl —y] = 2N +an_1(N)zV 1+ + a1 (M) X + ag(N),



where coefficients a; are smooth functions of A. Let F(z,\) denote the function of (z,\) € R+
on the far right-hand side. We have F(A(A),A) = 0 and, because the Perron-Frobenius eigenvalue
has multiplicity 1, 0, F(A(A), A) # 0. Hence, it follows from the the implicit function theorem that
A is a smooth function of A.
Then, the conclusion from the Gértner-Ellis theorem is that p,, (the distribution of Z,,) satisfy
an LDP with rate function I(z) = sup,cga{A - z — log p(IL\)}.
O

1.3 Key words:
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Perron-Frobenius theorem
5. Legendre-Fenchel transform

6. LDP of Markov chain

1.4 Exercise:

Exercise 1. Let ju, be probability measures on R and I : R — [0, 4] be a function (not
necessarily lower semicontinuous). Define I(z) = min{/(x),liminf, ,, I(y)} for z € R.

(a) Show that I: is lower semicontinuous. (Hence, the assumption of lower semicontinuity is not
restrictive. I is called the lower semicontinuous regularization of I).

(b) Suppose that the lower and the upper bounds above hold for all Borel sets B = R. Show that
these bounds still hold if I is replaced with I, that is,

~ I (B
~inf T(x) < liminf 28(B)
reBO n—-+0o0 n

- 1 B
— inf I(z) = limsup M_

z€B n—+00 n

for all Borel sets B = R. Moreover, I is the unique lower semicontinuous function with range
[0, 4+00] that satisfy these bounds. (Hence, the rate function, if exists, is unique.)

Exercise 2. Let M;([N]) denote the set of probability measures on the set [N] = {1,..., N}.
We can identify each p € My ([N]) with the vector (u;, ..., un), where p; = p({j}) for j € [N].
The relative entropy of g € My ([N]) with respect to € M;([N]) is defined as

q
H(q|u) Zq;10g< J)

where we interpret 0log0 and 0log(0/0) as 0. Suppose that g; > 0 for all j € [N]. Show that

H(qlu) =  sup 4 log< )
uEM1 EN ); /
Ui >
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