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1.1 Large deviation principle

Let pXiqiPN be i.i.d. random variables defined on a probability space pΩ,F ,Pq such that EXi “ 0
and VarXi “ 1. Let Sn “ n´1

řn
i“1Xi and µn denote the distribution of Sn for n P N. For

example, consider Xi „ N p0, 1q. Then Sn „ N p0, 1{nq and

Pp|Sn| ě `q “
2
?

2π

ż `8

`
?
n

e´y
2
{2dy “ e´

`2

2 n`opnq.

Similarly for 0 ă ` ă `1, we have

Pp|Sn| P r`, `
1sq “ e´

`2

2 n`opnq.

It is natural to ask if X is a general random variable with measure µ, what should we put on
the r.h.s. ? Motivation: for measure µ, what is the following I?

Pp|Sn| P r`, `
1sq “ e´Ip`qn`opnq. (1)

Definition 1.1. We say that µn satisfies an LDP with a rate function I if I : RÑ r0,`8s
is lower semicontinuous and, for all Borel sets B Ă R, we have

´ inf
xPB0

Ipxq ď lim inf
nÑ`8

logµnpBq

n
(lower bound)

´ inf
xPB

Ipxq ě lim sup
nÑ`8

logµnpBq

n
(upper bound).

Here, B0 and B denote the interior and the closure of B. Recall that I is lower-semicontinuous if
the sublevel set tI ď αu is closed for any α ă `8. This condition is equivalent to lim infyÑx Ipyq ě
Ipxq for any x P R.

Remark: it may take a while to understand this form. Here is the equivalent expressions, which
is very useful for me

e´pinfxPB̄ Ipxqq¨n`opnq ě µnpBq ě e´pinfxPB0 Ipxqq¨n`opnq

Note: you have to use B̄ in l.h.s, and use B0 in l.h.s
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The definition of LDP can be given for sequences of measures on arbitrary topological spaces.
I will refer to LDP for measures on Euclidean spaces below.

There are many basic properties of LDP in Prof. Varadhan, which some one can
introduce to us in the future.

The answer to (1):

Ipxq “ sup
λPR

 

λx´ log Eµ
reλX s

(

“ sup
λPR

"

λx´
1

n
log EµnreλX s

*

.

where µ is measure of Xi and µn is measure of
ř

iXi.

A useful tool to establish LDP is Gärtner-Ellis theorem. We consider the following
setup. Let pZnqnPN be a sequence of random vectors in Rd. Let µn denote the distribution of Zn.
Consider the log-moment generating function Λnpλq “ log Ereλ¨Zns for λ P Rd. We assume that
the following conditions hold:

1. The limit Λpλq “ limnÑ`8 n
´1Λnpnλq P p´8,`8s exists.

2. 0 P D0
Λ, where DΛ “ tλ P Rd : Λpλq ă 8u.

3. Λ is differentiable on D0
Λ.

4. (Steepness condition) For any x P BDΛ, lim λÑx
λPD0

Λ

|∇Λpλq| “ `8.

Theorem 1.1 (Gärtner-Ellis theorem). Under assumptions (a)-(d), pµnq satisfy an LDP with
convex, good (i.e. sublevel sets are compact) rate function Λ˚, the Legendre-Fenchel transform of
Λ given by

Λ˚pxq “ sup
λPRd

tλ ¨ x´ Λpλqu.

This theorem, in fact, a special case of the Gärtner-Ellis theorem; see, for example, [1], [2] for
the full theorem and its proof.

Example: Sum of i.i.d. random variables.

1.2 Application to the Markov chains

We now present an application of this theorem to the Markov chains in discrete time with finite
state space. We introduce some notation first. The state space is rN s “ t1, . . . , Nu. Let Π “

rπpi, jqsi,jPrNs be a stochastic matrix, that is, πpi, jq ě 0 and
ř

j πpi, jq “ 1 for each i P rN s. Let
Pπσ denote the Markov probability measure with transition matrix Π and initial state at σ P rN s.
Let Yn denote the state the chain visits at time n. We have

Pπσ pY1 “ y1, . . . , Yn “ ynq “ πpσ, y1qπpy1, y2q . . . πpyn´1, ynq

for any path py1, . . . , ynq in the state space. We assume that Π irreducible; this means that for
each pi, jq, there exists mpi, jq P N such that Πmpi,jqpi, jq ą 0.

Our goal is to obtain an LDP for random variables Zn “ n´1
řn
i“1 fpYiq, where f : rN s Ñ Rd

is a given function.
For the computation Λ, the limiting log-moment generating function, we will utilize the fol-

lowing result. For a vector u, we will write u " 0 if all components of u are positive.

Theorem 1.2 (Perron-Frobenius). Let B “ rBpi, jqsi,jPrNs be an irreducible matrix with positive
entries. Then B has a real eigenvalue ρ (called the Perron-Frobenius eigenvalue) with the following
properties.

(i) |λ| ď ρ for any eigenvalue of B.
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(ii) There exist a left eigenvector u and a right eigenvector v corresponding to ρ such that u " 0
and v " 0.

(iii) ρ has multiplicity 1.

(iv) For all i P rN s and ϕ " 0, we have

lim
nÑ`8

1

n
log

«

N
ÿ

j“1

Bnpi, jqϕj

ff

“ lim
nÑ`8

1

n
log

«

N
ÿ

i“1

Bnpi, jqϕi

ff

“ log ρ.

Proof of (iv). Let c “ minj ϕj{minj vj , where v is the right eigenvector corresponding to ρ. We
have

N
ÿ

j“1

Bnpi, jqϕj ě
N
ÿ

j“1

Bnpi, jqvjc “ cρnvi

Taking logarithms, dividing through by n and letting nÑ `8 yields

lim inf
nÑ`8

1

n
log

«

N
ÿ

j“1

Bnpi, jqϕj

ff

ě log ρ.

We similarly obtain that the limsup is bounded by log ρ.

Theorem 1.3. For Markov chain, random variables Zn “ n´1
řn
i“1 fpYiq satisfy LDP with a rate

function Ipxq with
Ipxq “ sup

λPRd

tλ ¨ x´ log ρpΠλqu

where Πλ “ rπλpi, jqsi,jPrNs defined by πλpi, jq “ πpi, jqeλ¨fpjq

Proof: We now turn to LDP for the Markov chain pYnq. We have

Λnpnλq

n
“

1

n
logEπσ

«

exp

˜

n
ÿ

i“1

λ ¨ fpYiq

¸ff

“
1

n
log

»

–

ÿ

py1,...,ynqPrNsn

exp

˜

ÿ

i

λ ¨ fpyiq

¸

ź

i

πpyi´1, yiq

fi

fl

“
1

n
log

»

–

ÿ

py1,...,ynqPrNsn

ź

i

πpyi´1, yiqe
λ¨fpyiq

fi

fl ,

where y0 “ σ. We observe that the matrix Πλ “ rπλpi, jqsi,jPrNs defined by πλpi, jq “ πpi, jqeλ¨fpjq

has positive entries and is irreducible because it is obtained from such a matrix Π by multiplying
each entry with a positive number. Hence,

Λnpnλq

n
“

1

n
log

«

N
ÿ

yn“1

Πn
λpσ, ynq

ff

Ñ log ρpΠλq

as n Ñ `8, by the Perron-Frobenius theorem (applied with ϕ “ p1, . . . , 1q). Since the Perron-
Frobenius eigenvalue is positive, we have Λpλq “ log ρpΠλq P p´8,`8q for all λ P Rd. Hence, (a),
(b) hold and (d) is vacuously true. To check differentiability of Λ, we consider the characteristic
equation

0 “ detrxI ´Πλs “ xN ` aN´1pλqx
N´1 ` . . .` a1pλqX ` a0pλq,
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where coefficients ai are smooth functions of λ. Let F px, λq denote the function of px, λq P Rd`1

on the far right-hand side. We have F pΛpλq, λq “ 0 and, because the Perron-Frobenius eigenvalue
has multiplicity 1, BxF pΛpλq, λq ‰ 0. Hence, it follows from the the implicit function theorem that
Λ is a smooth function of λ.

Then, the conclusion from the Gärtner-Ellis theorem is that µn (the distribution of Zn) satisfy
an LDP with rate function Ipzq “ supλPRdtλ ¨ z ´ log ρpΠλqu.

1.3 Key words:

1. Large deviation principle.

2. rate function

3. Gärtner-Ellis theorem

4. Perron-Frobenius theorem

5. Legendre-Fenchel transform

6. LDP of Markov chain

1.4 Exercise:

Exercise 1. Let µn be probability measures on R and I : R Ñ r0,`8s be a function (not
necessarily lower semicontinuous). Define Ĩpxq “ mintIpxq, lim infyÑx Ipyqu for x P R.

(a) Show that Ĩ is lower semicontinuous. (Hence, the assumption of lower semicontinuity is not
restrictive. Ĩ is called the lower semicontinuous regularization of I).

(b) Suppose that the lower and the upper bounds above hold for all Borel sets B Ă R. Show that
these bounds still hold if I is replaced with Ĩ, that is,

´ inf
xPB0

Ĩpxq ď lim inf
nÑ`8

logµnpBq

n

´ inf
xPB

Ĩpxq ě lim sup
nÑ`8

logµnpBq

n
.

for all Borel sets B Ă R. Moreover, Ĩ is the unique lower semicontinuous function with range
r0,`8s that satisfy these bounds. (Hence, the rate function, if exists, is unique.)

Exercise 2. Let M1prN sq denote the set of probability measures on the set rN s “ t1, . . . , Nu.
We can identify each µ P M1prN sq with the vector pµj , . . . , µN q, where µj “ µptjuq for j P rN s.
The relative entropy of q PM1prN sq with respect to µ PM1prN sq is defined as

Hpq|µq “
ÿ

j

qj log

ˆ

qj
µj

˙

,

where we interpret 0 log 0 and 0 logp0{0q as 0. Suppose that qj ą 0 for all j P rN s. Show that

Hpq|µq “ sup
uPM1prNsq

uią0

ÿ

j

qj log

ˆ

uj
µj

˙

.
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