- 1 Prove that a consistent finitely axiomalizable lpossibly incomplete) theory T with less than continuum many completions must have a finitely axiomalizable completion.
- 2) Say that a linear order is an almost well-order if every proper final segment of it is well-ordered. For example, will is an almost well-order, but not a well-order. Prove that there are continuum many Inon-isomorphic) countable almost well orders.
- 3 Consider the partial order $P = (P(\omega), \subseteq)$ Show that: 1. If d is an ordinal that order-embeds into Pthen d is countable. 2. P order embeds into P.
- (a). Call a total order almost deuse if and only if it has no first or last element and there are I no triples X < y < z such that y is the only element between x and z. Prove that there are 200 non-isomorphic countable deuse total orders.
- B Let U be a structure where $\phi(x,y)$ dyines a linear order on an infinite set $X \subseteq U$.

 Given any linear order bype τ , show that there are $U \geq U$ and an infinite set $J \subset U$ of order type τ dyined by $\phi(x,y)$.
- © het X be any set and $f: P(X) \rightarrow P(X)$ be order preserving (i.e. for any A,B & P(X)
 if A \(\text{B} \) then $P(A) \subseteq f(B)$). Prove that there
 is a set $Y \in P(X)$ s.t f(Y) = Y.
- 1). Let it be a set totally ordered by and assume that in it there are no increasing or dicreasing wir-sequences and no subsets isomorphic to the rationals. Prove that A is countable.