Putnam Club. Fall 2020 Problem session for October 7. Number theory-2.

Do not forget for problems 3,4,6 from the previous list.

- 1. Find all prime numbers p, such that $p^2 + 11$ has exactly 6 positive integer divisors.
- 2. Let lcm(a,b) and gcd(a,b) be the least common multiplier and the greatest common divisor of a and b. Prove that if $a \cdot gcd(a,b) + b \cdot lcm(a,b) < 5ab/2$, then b|a.
- 3. Let f be a polynomial with positive integer coefficients. Prove that if n is a positive integer, then f(n) divides f(f(n) + 1) if and only if n = 1.
- 4. Let \mathbb{N} be the set of positive integers. Prove that there is no function $f : \mathbb{N} \to \mathbb{N}$, such that for all positive integers n : 6f(f(n)) = 5f(n) n.
- 5. Let S be the smallest set of positive integers such that a) 2 is in S, b) n is in S whenever n^2 is in S, and c) $(n + 5)^2$ is in S whenever n is in S. Which positive integers are not in S? (The set S is "smallest" in the sense that S is contained in any other such set.)
- 6. Let k be positive integer, and P(x), Q(x) be polynomials with integer coefficients. Assume that for any integer x P(Q(x)) x is divisible by k. Prove that then Q(P(x)) x is also divisible by k for any x.
- 7. Is it possible to construct an infinite set M of positive integers in such a way that no element of M and no sum of several elements of M would be an exact power of an integer? (In other words M may not have elements of the form k^n , with integer k, n > 2, and no sums of elements of M may not be of this form either.)
- 8. Suppose p is a prime number and a sequence of integers is defined as follows: $a_0 = 0$, $a_1 = 1$ and $a_{k+2} = 2a_k pa_{k-1}$ for $k \ge 0$. Find, with proof, all numbers p such that this consequence contains -1.
- 9. Prove that the sequence $2^n 3$, $n \ge 1$, contains an infinite subsequence whose terms are pairwise relatively prime.