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In general, there are two type of integral problems: equalities and inequalities. In the two
lectures, we will focus on equalities. Let us start with some standard techniques computing
integrals.

Explore the symmetry
Example (Putnam 1987 Bl). Ewvaluate
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Example (Putnam and Beyond, Problem 453). Compute the integral
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Find the right substitution

Example (Putnam and Beyond, Problem 455). Let a and b be positive real numbers. Compute

Trigonometric identities can be helpful

Example (Putnam and Beyond, Problem 458). Compute the integral
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Hint: tan(a + ) = %

Riemann sums

Example (Putnam and Beyond, Page 154). Denote by G,, the geometric mean of the binomial

coefficients
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Prove that



Solution (Suggested by —). We want to show that
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Use the Stolz—Cesdro theorem, the left-hand-side is equal to
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Here, using I’Hopital’s rule, we have lim,_,g+ zInx = lim,_,o+ 11% = lim,_,o+ % =0, which
implies the last equality.

Further exercises

1. (Putnam and Beyond, Page 150) Let f : [0, 1] — R be a continuous function. Prove that
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2. (Putnam and Beyond, Problem 457) Let a be a positive real number. Compute the integral
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3. (Putnam 1980, A3) Evaluate
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Hint: this problem is indeed similar to the problem 2.

4. (Putnam 1982, A3) Evaluate

dz.
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5. (Putnam 1989, A2) Evaluate
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where a and b are positive.



. (Putnam and Beyond, Problem 468) Compute
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. (Putnam and Beyond, Problem 447) Compute the indefinite integral
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. (Putnam 1992, A2) Define C(a) to be the coefficient of 2?92 in the power series about

x =0 of (14 z)*. Evaluate
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. (Putnam 2016, A3) Suppose that f is a function from R to R such that

flz)+ f <1 — ;) = arctan x

/0 1 f(z)dz.

for all real number x # 0. Find



