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1 Functions: a reminder of classical results and prob-

lems

Continuity (definition). For x0 an accumulation point of the domain of the definitipn
of a function f , we say that limx→x0 f(x) = L if for every neighborhood V of L, there
is a neighborhood U of x0 such that f(U) ⊂ V . A function that is continuous at every
point of its domain is simply called continuous.

Peanos theorem. There exists a continuous surjection φ : [0, 1]→ [0, 1]× [0, 1]

Darboux property. A real-valued function f defined on an interval is said to have the
intermediate value property (or the Darboux property) if for every a < b in the interval
and for every λ between f(a) and f(b), there exists c between a and b such that f(c) = λ.
Equivalently, a real-valued function has the intermediate property if it maps intervals
to intervals. The higher-dimensional analogue requires the function to map connected
sets to connected sets. Continuous functions and derivatives of functions are known to
have this property, although the class of functions with the intermediate value property
is considerably larger.

Important property of continuous functions. A general property that the image
through a continuous map of a connected set is connected.

Derivatives (definition). A function f defined in an open interval containing the
point x0 is called differentiable at x0 if

lim
h→0

f(x0 + h)− f(x0)

h

exists. In this case, the limit is called the derivative of f and is denoted by f ′(x0).
If the derivative is defined at every point of the domain of f , then f is simply called
differentiable.

The mean value theorem. If f : [a, b] → R is a function that is continuous on [a, b]
and differentiable on (a, b), then there exists c ∈ (a, b) such that

f ′(c) =
f(b)− f(a)

b− a
.



Rolle’s theorem. If f : [a, b]→ R is a function that is continuous on [a, b] and differen-
tiable on (a, b), and satisfies f(a) = f(b), then there exists c ∈ (a, b) such that f ′(c) = 0.

Example. Prove that the Legendre polynomial

Pn(x) =
dn

dxn
(x2 − 1)n

has n distinct zeros in the interval (−1, 1).

Cauchy’s theorem. If f, g : [a, b] → R are two functions, continuous on [a, b] and
differentiable on (a, b), then there exists c ∈ (a, b) such that

(f(b)− f(a)) g′(c) = (g(b)− g(a)) f ′(c).

Hölder’s inequality. If x1, x2, . . . xn, y1, y2, . . . , yn, p and q are positive numbers with

1

p
+

1

q
= 1,

then
n∑

i=1

xiyi ≤

(
n∑

i=1

xpi

)1/p( n∑
i=1

ypi

)1/q

with equality if and only if the two vectors (x1, x2, . . . , xn) and (y1, y2, . . . , yn) are parallel.

Jensen’s inequality. For a convex function f let x1 . . . le points in its domain and let
λi, i ≥ 1 be positive numbers such that

∑
i λi = 1. Then

f(λ1x1 + λ2x2 + . . . λnxn) ≤ λ1f(x1) + λ2f(x2) + . . . λnf(xn).

If is f nowhere linear and the x’s are not all equal, then the inequality is strict. The
inequality is reversed for a concave function.

1. Let f : [0, 1]→ R be a continuous function with the property that∫ 1

0

f(x) dx =
π

4
.

Prove that there exists x0 ∈ (0, 1) such that

1

1 + x0
< f(x0) <

1

2x0
.

2. Prove that any convex polygonal surface can be divided by two perpendicular lines
into four regions of equal area.



3. Prove that for any natural number n ≥ 2 and any |x| ≤ 1,

(1 + x)n + (1− x)n ≤ 2n.

4. Suppose that f is a function from R to R such that

f(x) + f

(
1− 1

x

)
= arctanx

for all real x 6= 0. (As usual, y = arctanx means −π/2 < y < π/2 and tan y = x.)
Find ∫ 1

0

f(x) dx.

5. Suppose that f is a function on the interval [1, 3] such that −1 ≤ f(x) ≤ 1 for all

x and
∫ 3

1
f(x) dx = 0. How large can

∫ 3

1
f(x)
x
dx be?

6. Let f : [0, 1]→ R be a function for which there exists a constant K > 0 such that
|f(x)− f(y)| ≤ K |x− y| for all x, y ∈ [0, 1]. Suppose also that for each rational
number r ∈ [0, 1], there exist integers a and b such that f(r) = a + br. Prove
that there exist finitely many intervals I1, . . . , In such that f is a linear function
on each Ii and [0, 1] =

⋃n
i=1 Ii.

7. Let f : [0,∞)→ R be a strictly decreasing continuous function such that limx→∞ f(x) =

0. Prove that
∫∞
0

f(x)−f(x+1)
f(x)

dx diverges.

2 Sequences: a reminder of classical results and more

problems

Monitonicity. Every bounded monotone real sequence a1, a2, . . . converges to a limit.

Cauchy sequence (definition). A sequence a1, a2, . . . is called Cauchy sequence if for
every ε > 0, there exists a positive integer N such that for all i, j > N we have

|ai − aj| < ε.

The real and complex number systems have the property that every Cauchy sequence
converges to a limit, which is a number in the system.

Absolute convergence. Let z1, z2, . . . be a sequene of complex numbers, for which∑
i

|zi| converges. Then
∑

i zi converges as well.

Abel summation. Let a1, a2, . . . , an and b1, b2, . . . , bn be two sequences, and let Bk :=∑k
i=1 bi for every k. Then

n∑
i=1

aibi = anBn −
n−1∑
i=1

Bi(ai+1 − ai).



Classical problem. Prove that the sequence
√

7,
√

7 +
√

7,

√
7 +

√
7 +
√

7, . . . con-
verges, and determine its limit. This sequence is often denoted as√

7 +

√
7 +
√

7 + · · ·.

1 Show that if
∑∞

i=1 a
2
i and

∑∞
i=1 b

2
i both converge, then so does

∑∞
i=1(ai − bi)p, for

every p ≥ 2.

2 Let a1, a2, . . . be positive integers such that
∑

(1/ai) converges. For each n,
let bn denotes the number of positive integers i for which ai ≤ n. Prove that
limn→∞(bn/n) = 0.

3 Let a1, a2, . . . be a sequence of real numbers for which
∑∞

i=1 ai converges. Show
that the sum

∑∞
i=1(ai/i) also converges.

4 Let {ai} be a monotonically decreasing sequence of positive real numbers, for which∑∞
i=1 ai converges. Show that

∞∑
i=1

i(ai − ai+1)

also converges.

5 Let α be an arbitrary real number. Define a1 := α, and for all n ≥ 1, let

an+1 = cos(an).

Prove that an converges to a limit, and that this limit dies not depend on α.

6 Prove that the sequence
√

7,
√

7−
√

7,

√
7−

√
7 +
√

7,

√
7−

√
7 +

√
7−
√

7, . . .

converges, and determine its limit.

7 Let z1, z2, . . . be nonzero complex numbers with the property that |zi − zj| > 1 for
all pairs (i, j). Prove that

∑
i(1/z

3
i ) converges.

8 Let {ai} be a sequence of positive real numbers. Show that lim sup
(

a1+an+1

an

)n
≥ e.

9 Let a1, a2, . . . be a sequence of positive real numbers for which
∑∞

i=1(1/ai) con-
verges. For every n, let bn = a1+···+an

n
. Show that

∑∞
i=1(1/bn also converges.

10. Given a positive integer n, let M(n) be the largest integer m such that(
m

n− 1

)
>

(
m− 1

n

)
.

Evaluate

lim
n→∞

M(n)

n
.


