
Putnam Club. Fall 2020

Problem session for October 28. Polynomials. Solutions.

1. a, b, and c are the three roots of the polynomial x3 − 3x2 + 1. Find a3 + b3 + c3.

Solution. Using a3 = 3a2 − 1 and similar relations for b, c, we get

a3 + b3 + c3 = 3(a2 + b2 + c2)− 3 = 3
(
(a+ b+ c)2 − 2(ab+ ac+ bc)

)
− 3.

Viete relations gives a+ b+ c = 3, and ab+ ac+ bc = 0, thus

a3 + b3 + c3 = 3 · 32 − 3 = 24.

2. Find all polynomials satisfying the functional equation

xP (x− 1) = (x− 20)P (x).

Solution. Substituting x = 0, we get that 0 is a root of P (x), so P (x) = xP1(x).
Therefore

x(x− 1)P1(x− 1) = (x− 20)xP1(x)⇒ (x− 1)P1(x− 1) = (x− 20)P1(x).

Substituting x = 1, we get that 1 is a root of P1(x), so P1(x) = (x− 1)P2(x). Therefore

(x− 1)(x− 2)P2(x− 1) = (x− 20)(x− 1)P2(x)⇒ (x− 2)P2(x− 1) = (x− 20)P2(x).

Repeating similar arguments we can get

(x− 3)P3(x− 1) = (x− 20)P3(x),

. . . . . . . . .

(x− 20)P20(x− 1) = (x− 20)P20(x),

and P (x) = x(x− 1) . . . (x− 19)P20(x). Thus, since equation

P20(x− 1) = P20(x)

can be valid for any x only for P20(x) = const, we get finally

P (x) = Cx(x− 1) . . . (x− 20).

3. Let P (x) and Q(x) be monic polynomials of degree 10. It is known, that the equation
P (x) = Q(x) has no real roots. Prove that the equation P (x+ 1) = Q(x−1) has at least
one real root.

Solution. Recall that any polynomial of odd degree has a real root. Since P (x)−Q(x)
is a polynomial of the degree at most 9, and it does not have any real roots, it must
be of the degree at most 8, i.e. coefficients at x9 in P (x) and Q(x) are equal. Hence
the coefficient at x9 in P (x + 1) − Q(x − 1) is the same that the coefficient at x9 in
(x+ 1)10 − (x− 1)10, i.e. 20. Therefore P (x+ 1)−Q(x− 1) is of the degree 9, and so it
has at least one real root.
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4. Let P (x) be a polynomial of odd degree with real coefficients. Show that the equation
P (P (x)) = 0 has at least as many real roots as the equation P (x) = 0, counted without
multiplicities.

Solution. Let P (x) = (x−x1)(x−x2) . . . (x−xk)Q(x), where x1,. . . , xk are all different
roots of P (x), and Q(x) is everything left in factorization of P . Then

P (P (x)) = (P (x)− x1) . . . (P (x)− xk)Q(P (x)).

Notice that P (x)− xi has an odd degree so it must have solution for all i. In additions,
this solutions should be different since all xi are different. That finishes the proof.

5. Let P (x) be a polynomial and a1, a2, b1, b2 be some real numbers. Assume that for any
real x we have P (a1x+ b1) + P (a2x+ b2) = P (x). Prove that P (x) has at least one real
root.

Solution. Notice that if a1 6= 1, then there exists x1 such that a1x1 + b1 = x1, and thus
substitution x = x1 gives P (a2x1 + b2) = 0. Therefore a1 = 1. Similarly a2 = 1. Now
look at the top coefficient: if P (x) = anx

n + . . .+ a0, then

P (x+ b1) + P (x+ b2) = 2anx
n + . . . ,

so it cannot be equal to P (x).

6. Let P (z) = az4 + bz3 + cz2 + dz + e = a(z − r1)(z − r2)(z − r3)(z − r4), where a, b, c, d, e
are integers, a 6= 0. Show that if r1 + r2 is a rational number, and if r1 + r2 6= r3 + r4,
then r1r2 is a rational number.

Solution. The first Viete relation gives

r1 + r2 + r3 + r4 = −b/a,

so r3 + r4 is rational. Also,

r1r2 + r1r3 + r1r4 + r2r3 + r2r4 + r3r4 = c/a.

Therefore,
r1r2 + r3r4 = c/a− (r1 + r2)(r3 + r4).

Finally,
r1r2r3 + r1r2r4 + r1r3r4 + r2r3r4 = −d/a,

which is equivalent to

(r1 + r2)r3r4 + (r3 + r4)r1r2 = −d/a.

We observe that the products r1r2 and r3r4 satisfy the linear system of equations

αx+ βy = u,

γx+ δy = v,

where α = 1, β = 1, γ = r3 + r4, δ = r1 + r2, u = c/a?(r1 + r2)(r3 + r4), v = −d/a.
Because r1 + r2 = r3 + r4, this system has a unique solution; this solution is rational.
Hence both r1r2 and r3r4 are rational, and the problem is solved.
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7. Let P (x) be a polynomial with integer coefficients such that |P (3)| = |P (7)| = 1. Prove
that P (x) does not have any integer roots.

Solution. We are going to use x− y|P (x)− P (y). Let P (a) = 0. Then

a− 3|P (a)− P (3) = ±1, a− 7|P (a)− P (7) = ±1,

hence
a− 3 = ±1, a− 7 = ±1,

which is impossible.

8. Let P (x) be a polynomial of degree n > 3 whose zeros x1 < x2 < x3 < . . . < xn−1 < xn
are real. Prove that

P ′
(x1 + x2

2

)
· P ′

(xn−1 + xn
2

)
6= 0.

Solution. We are going to use

P ′(x)

P (x)
=

1

x− x1
+

1

x− x2
+ . . .+

1

x− xn
.

If we substitute x0 = (x1 + x2)/2, we obtain

P ′(x0)

P (x0)
=

1

x0 − x1
+

1

x0 − x2
+ . . .+

1

x0 − xn
.

Since
1

x0 − x1
+

1

x0 − x2
=

2

x1 − x2
+

2

x2 − x1
= 0,

and x0 − xi < 0 for all i = 3, . . . , n, we get

P ′(x0)

P (x0)
< 0,

thus P ′
(x1 + x2

2

)
6= 0. Similarly we can prove P ′

(xn−1 + xn
2

)
6= 0.

9. Let p(x) be a real polynomial that is non-negative for all real x. Prove that for some k,
there are real polynomials f1(x), . . . , fk(x) such that p(x) = f1(x)2+f2(x)2+. . .+fk(x)2.

Solution. Since p(x) ≥ 0, any real root ci of p(x) must have even multiplicity. All
complex roots of p(x) must be in conjugate pairs, and

(x− (a+ ib))(x− (a− ib)) = (x− a)2 + b2,

so we can factorize p(x) as

p(x) = (x− c1)2k1 · . . . · (x− cp)2kp ·
(
(x− a1)2 + b21

)
· . . . ·

(
(x− aq)2 + b2q

)
.

Expanding parentheses in this expression we get p(x) = f1(x)2 + f2(x)2 + . . .+ fk(x)2.
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10. Suppose P (x) is a polynomial of degree 3. A valid operation consists of replacing the
current polynomial Q(x) by either Q (x) +Q′(x) or Q (x)−Q′(x). Prove that a sequence
of valid operations starting with P (x) will never result in getting the same polynomial
again.

Solution. Assume the opposite. It is easy to check that the two operations commute.
Now let us look on the coefficient at the term with x2. If the top coefficient of P (x) is a,
then it is always a, and thus each operation add to the term with x2 ±3a. Therefore the
number of operations with plus and with minus must be equal. Hence we can assume
that the order of operation is +,−,+,−, . . . ,+,−. Next, look on the coefficient at x if
we perform first the operation with ”+”, and then with ”-”:

(Q(x) +Q′(x))− (Q(x) +Q′(x))′ = Q(x)−Q′′(x) = (ax3 + bx2 + cx+ d)− (6ax+ 2b),

so the coefficient at x is c− 6a. Since a is a constant, we get the contradiction.

11. Find all polynomials P (x), Q(x) with real coefficients such that

P (x)Q(x+ 1)− P (x+ 1)Q(x) = 1.

Solution. Suppose p and p satisfy the given equation; note that neither p nor q can be
identically zero. By subtracting the equations

p(x)q(x+ 1)− p(x+ 1)q(x) = 1,

p(x− 1)q(x)− p(x)q(x− 1) = 1;

we obtain the equation

p(x)(q(x+ 1) + q(x− 1)) = q(x)(p(x+ 1) + p(x− 1)).

The original equation implies that p(x) and q(x) have no common nonconstant factor,
so p(x) divides p(x + 1) + p(x − 1). Since each of p(x + 1) and p(x − 1) has the same
degree and leading coefficient as p(x), we must have

p(x+ 1) + p(x− 1) = 2p(x).

If we define the polynomials r(x) = p(x+1)−p(x), s(x) = q(x+1)−q(x), we have r(x+
1) = r(x), and similarly s(x + 1) = s(x), so r(x) and s(x) are constants. Consequently,
p(x) = ax+ b, q(x) = cx+ d. For p and q of this form,

p(x)q(x+ 1)− p(x+ 1)q(x) = bc− ad;

so we get a solution if and only if bc− ad = 1.

12. Find, with proof, for which n there exists a polynomial P (x) of degree n with real
coefficients and a polynomial Q(x), such that P (x2 + x+ 1) = P (x)Q(x).

Solution. If a is a real root P (x), then a2 + a + 1 > a is also the real root of P .
Continuing this process we can get an infinite increasing sequence of roots of P (x),
which is impossible. Hence P (x) cannot have any real roots, thus it must have even
degree. It is also easy to check that for any even n = 2k the polynomial (x2 + 1)k works.
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13. Country Fateland selects its 6-person IMO team in the following way. There are 13
candidates who take team selection test and score a1, a2, . . . , a13 points. The scores are
assumed to be distinct. Also there is a secret polynomial P (x) with real coefficients that
measures ”creative potential” of contests. The six students with the highest values of
P (ai) go to the IMO. Unfortunately, Mr. Unfair, the team leader, has pre-determined the
team before the test. Find, with proof, the smallest n such that Mr. Unfair can always
justify his selection regardless of test results using a polynomial of degree no more than n.

Solution. Because of the interpolation formula, there exists polynomial of degree 12
with any given values in a1, . . . , a13, so n = 12 is enough. Now let us assume that a1 <
a2 < . . . < a13, and Mr. Unfair wants to select students with results a2, a4, . . . , a12. Then
if c = min{P (a2), P (a4), . . . , P (a12)} − ε, we have P (a1) < c, P (a2) > c, P (a3) < c,. . . ,
P (a12) > c, P (a13) < c. But this means that polynomial P (x)− c must have at least 12
roots (since on any interval [ai, ai+1] there is at least one root), thus P (x) has the degree
at least 12.
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