
Fall 2021

Wednesday, November 22nd, 2021

Last time we started working on the following 5 problems. For some of them we
found solutions, but for some we did not. Let’s pick up from where we left ! I am
adding more problems to this working sheet, hopping they will be a good exercise for
the coming up exam!

1. (Putnam B3 2005 ) Find all differentiable functions f : (0,∞)→ (0,∞) for which
there is a positive real number a such that

f ′
(a
x

)
=

x

f(x)

for all x > 0.

Proof. Substitute a/x for x in the given equation:

f ′(x) =
a

xf(a/x)
.

Differentiate:

f ′′(x) = − a

x2f(a/x)
+
a2f ′(a/x)

x3f(a/x)2
.

Now substitute to eliminate evaluations at a/x:

f ′′(x) = −f
′(x)

x
+
f ′(x)2

f(x)
.

Clear denominators:

xf(x)f ′′(x) + f(x)f ′(x) = xf ′(x)2.

Divide through by f(x)2 and rearrange:

0 =
f ′(x)

f(x)
+
xf ′′(x)

f(x)
− xf ′(x)2

f(x)2
.

The right side is the derivative of xf ′(x)/f(x), so that quantity is constant. That
is, for some d,

f ′(x)

f(x)
=
d

x
.

Integrating yields f(x) = cxd, as desired.

2. Suppose that f is a function on the interval [1, 3] such that −1 ≤ f(x) ≤ 1 for all

x and
∫ 3

1
f(x) dx = 0. How large can

∫ 3

1
f(x)
x
dx be?

Solution: In all solutions, we assume that the function f is integrable.



Proof. Let g(x) be 1 for 1 ≤ x ≤ 2 and −1 for 2 < x ≤ 3, and define h(x) =

g(x) − f(x). Then
∫ 3

1
h(x) dx = 0 and h(x) ≥ 0 for 1 ≤ x ≤ 2, h(x) ≤ 0 for

2 < x ≤ 3. Now ∫ 3

1

h(x)

x
dx =

∫ 2

1

|h(x)|
x

dx−
∫ 3

2

|h(x)|
x

dx

≥
∫ 2

1

|h(x)|
2

dx−
∫ 3

2

|h(x)|
2

dx = 0,

and thus
∫ 3

1
f(x)
x
dx ≤

∫ 3

1
g(x)
x
dx = 2 log 2 − log 3 = log 4

3
. Since g(x) achieves the

upper bound, the answer is log 4
3
.

3. (Putnam and beyound exemplu pag 132) Let f : [0, 1] → R be a continuous
function with the property that ∫ 1

0

f(x) dx =
π

4
.

Prove that there exists x0 ∈ (0, 1) such that

1

1 + x0
< f(x0) <

1

2x0
.

Proof. to come!

4. Let f : [0,∞)→ R be a strictly decreasing continuous function such that limx→∞ f(x) =
0. Prove that ∫ ∞

0

f(x)− f(x+ 1)

f(x)
dx

diverges.

Proof. Solution: First solution. Note that the hypotheses on f imply that
f(x) > 0 for all x ∈ [0,+∞), so the integrand is a continuous function of f and
the integral makes sense. Rewrite the integral as∫ ∞

0

(
1− f(x+ 1)

f(x)

)
dx,

and suppose by way of contradiction that it converges to a finite limit L. For
n ≥ 0, define the Lebesgue measurable set

In = {x ∈ [0, 1] : 1− f(x+ n+ 1)

f(x+ n)
≤ 1/2}.



Then L ≥
∑∞

n=0
1
2
(1 − µ(In)), so the latter sum converges. In particular, there

exists a nonnegative integer N for which
∑∞

n=N(1− µ(In)) < 1; the intersection

I =
∞⋃

n=N

In = [0, 1]−
∞⋂

n=N

([0, 1]− In)

then has positive Lebesgue measure.

By Taylor’s theorem with remainder, for t ∈ [0, 1/2],

− log(1− t) ≤ t+ t2 sup
t∈[0,1/2]

{
1

(1− t)2

}
= t+

4

3
t2 ≤ 5

3
t.

For each nonnegative integer n ≥ N , we then have

L ≥
∫ n

N

(
1− f(x+ 1)

f(x)

)
dx

=
n−1∑
i=N

∫ 1

0

(
1− f(x+ i+ 1)

f(x+ i)

)
dx

≥
n−1∑
i=N

∫
I

(
1− f(x+ i+ 1)

f(x+ i)

)
dx

≥ 3

5

n−1∑
i=N

∫
I

log
f(x+ i)

f(x+ i+ 1)
dx

=
3

5

∫
I

(
n−1∑
i=N

log
f(x+ i)

f(x+ i+ 1)

)
dx

=
3

5

∫
I

log
f(x+N)

f(x+ n)
dx.

For each x ∈ I, log f(x+N)/f(x+n) is a strictly increasing unbounded function of
n. By the monotone convergence theorem, the integral

∫
I

log(f(x+N)/f(x+n)) dx
grows without bound as n → +∞, a contradiction. Thus the original integral
diverges, as desired.

Remark. This solution is motivated by the commonly-used fact that an infinite
product (1+x1)(1+x2) · · · converges absolutely if and only if the sum x1+x2+ · · ·
converges absolutely. The additional measure-theoretic argument at the beginning
is needed because one cannot bound − log(1− t) by a fixed multiple of t uniformly
for all t ∈ [0, 1).

Greg Martin suggests a variant solution that avoids use of Lebesgue measure. Note
first that if f(y) > 2f(y + 1), then either f(y) >

√
2f(y + 1/2) or f(y + 1/2) >√

2f(y + 1), and in either case we deduce that∫ y+1/2

y−1/2

f(x)− f(x+ 1)

f(x)
dx >

1

2

(
1− 1√

2

)
>

1

7
.



If there exist arbitrarily large values of y for which f(y) > 2f(y + 1), we deduce
that the original integral is greater than any multiple of 1/7, and so diverges.
Otherwise, for x large we may argue that

f(x)− f(x+ 1)

f(x)
>

3

5
log

f(x)

f(x+ 1)

as in the above solution, and again get divergence using a telescoping sum.

Second solution. (Communicated by Paul Allen.) Let b > a be nonnegative
integers. Then∫ b

a

f(x)− f(x+ 1)

f(x)
dx =

b−1∑
k=a

∫ 1

0

f(x+ k)− f(x+ k + 1)

f(x+ k)
dx

=

∫ 1

0

b−1∑
k=a

f(x+ k)− f(x+ k + 1)

f(x+ k)
dx

≥
∫ 1

0

b−1∑
k=a

f(x+ k)− f(x+ k + 1)

f(x+ a)
dx

=

∫ 1

0

f(x+ a)− f(x+ b)

f(x+ a)
dx.

Now since f(x)→ 0, given a, we can choose an integer l(a) > a for which f(l(a)) <

f(a + 1)/2; then f(x+a)−f(x+l(a))
f(x+a)

≥ 1 − f(l(a))
f(a+1)

> 1/2 for all x ∈ [0, 1]. Thus if we

define a sequence of integers an by a0 = 0, an+1 = l(an), then∫ ∞
0

f(x)− f(x+ 1)

f(x)
dx =

∞∑
n=0

∫ an+1

an

f(x)− f(x+ 1)

f(x)
dx

>
∞∑
n=0

∫ 1

0

(1/2)dx,

and the final sum clearly diverges.

Third solution. (By Joshua Rosenberg, communicated by Catalin Zara.) If the
original integral converges, then on one hand the integrand (f(x)−f(x+1))/f(x) =
1− f(x+ 1)/f(x) cannot tend to 1 as x→∞. On the other hand, for any a ≥ 0,

0 <
f(a+ 1)

f(a)

<
1

f(a)

∫ a+1

a

f(x) dx

=
1

f(a)

∫ ∞
a

(f(x)− f(x+ 1)) dx

≤
∫ ∞
a

f(x)− f(x+ 1)

f(x)
dx,



and the last expression tends to 0 as a → ∞. Hence by the squeeze theorem,
f(a+ 1)/f(a)→ 0 as a→∞, a contradiction.

5. Let f : [0, 1]→ R be a function for which there exists a constant K > 0 such that
|f(x)− f(y)| ≤ K |x− y| for all x, y ∈ [0, 1]. Suppose also that for each rational
number r ∈ [0, 1], there exist integers a and b such that f(r) = a + br. Prove
that there exist finitely many intervals I1, . . . , In such that f is a linear function
on each Ii and [0, 1] =

⋃n
i=1 Ii.

Proof. Let us say that a linear function g on an interval is integral if it has the
form g(x) = a+bx for some a, b ∈ Z, and that a piecewise linear function is integral
if on every interval where it is linear, it is also integral.

For each positive integer n, define the n-th Farey sequence Fn as the sequence
of rational numbers in [0, 1] with denominators at most n. It is easily shown by
induction on n that any two consecutive elements r

s
, r

′

s′
of Fn, written in lowest

terms, satisfy gcd(s, s′) = 1, s+ s′ > n, and r′s− rs′ = 1. Namely, this is obvious
for n = 1 because F1 = 0

1
, 1
1
. To deduce the claim for Fn from the claim for Fn−1,

let r
s
, r

′

s′
be consecutive elements of Fn−1. If s+ s′ = n, then for m = r+ r′ we have

r
s
< m

n
< r′

s′
and the pairs r

s
, m
n

and m
n
, r

′

s′
satisfy the desired conditions. Conversely,

if s + s′ > n, then we cannot have r
s
< m

n
< r′

s′
for a ∈ Z, as this yields the

contradiction
n = (ms− nr)s′ + (r′n−ms′) ≥ s+ s′ > n;

hence r
s
, r

′

s′
remain consecutive in Fn.

Let fn : [0, 1] → R be the piecewise linear function which agrees with f at each
element of Fn and is linear between any two consecutive elements of Fn. Between
any two consecutive elements r

s
, r

′

s′
of Fn, fn coincides with some linear function

a+ bx. Since sf( r
s
), s′f( r

′

s′
) ∈ Z, we deduce first that

b = ss′(f(
r′

s′
)− f(

r

s
))

is an integer of absolute value at most K, and second that both as = sf( r
s
) − br

and as′ = s′f( r
′

s′
)− br′ are integral. It follows that fn is integral.

We now check that if n > 2K, then fn = fn−1. For this, it suffices to check that
for any consecutive elements r

s
, m
n
, r

′

s′
in Fn, the linear function a0 + b0x matching

fn−1 from r
s

to r′

s′
has the property that f(m

n
) = a0 + b0

m
n

. Define the integer
t = nf(m

n
) − a0n − b0m. We then compute that the slope of fn from r

s
to m

n
is

b0 + st, while the slope of fn from m
n

to r′

s′
is at most b0 − s′t. In order to have

|b0 + st| , |b0 − s′t| ≤ K, we must have (s + s′) |t| ≤ 2K; since s + s′ = n > 2K,
this is only possible if t = 0. Hence fn = fn−1, as claimed.

It follows that for any n > 2K, we must have fn = fn+1 = · · · . Since the condition
on f and K implies that f is continuous, we must also have fn = f , completing
the proof.



Remark: The condition on f and K is called Lipschitz continuity.

Remark: An alternate approach is to prove that for each x ∈ [0, 1), there exists
ε ∈ (0, 1 − x) such that the restriction of f to [x, x + ε) is linear; one may then
deduce the claim using the compactness of [0, 1]. In this approach, the role of the
Farey sequence may also be played by the convergents of the continued fraction of
x (at least in the case where x is irrational).

Remark: This problem and solution are due to one of us (Kedlaya). Some related
results can be proved with the Lipschitz continuity condition replaced by suitable
convexity conditions. See for example: Kiran S. Kedlaya and Philip Tynan, De-
tecting integral polyhedral functions, Confluentes Mathematici 1 (2009), 87–109.
Such results arise in the theory of p-adic differential equations; see for example:
Kiran S. Kedlaya and Liang Xiao, Differential modules on p-adic polyannuli, J.
Inst. Math. Jusssieu 9 (2010), 155–201 (errata, ibid., 669–671).

6. ([B5] 2009 ) Let f : (1,∞)→ R be a differentiable function such that

f ′(x) =
x2 − f(x)2

x2(f(x)2 + 1)
for all x > 1.

Prove that limx→∞ f(x) =∞.

Proof. First solution. If f(x) ≥ x for all x > 1, then the desired conclusion
clearly holds. We may thus assume hereafter that there exists x0 > 1 for which
f(x0) < x0.

Rewrite the original differential equation as

f ′(x) = 1− x2 + 1

x2
f(x)2

1 + f(x)2
.

Put c0 = min{0, f(x0)− 1/x0}. For all x ≥ x0, we have f ′(x) > −1/x2 and so

f(x) ≥ f(x0)−
∫ x

x0

dt/t2 > c0.

In the other direction, we claim that f(x) < x for all x ≥ x0. To see this, suppose
the contrary; then by continuity, there is a least x ≥ x0 for which f(x) ≥ x, and
this least value satisfies f(x) = x. However, this forces f ′(x) = 0 < 1 and so
f(x− ε) > x− ε for ε > 0 small, contradicting the choice of x.

Put x1 = max{x0,−c0}. For x ≥ x1, we have |f(x)| < x and so f ′(x) > 0. In
particular, the limit limx→+∞ f(x) = L exists.

Suppose that L < +∞; then limx→+∞ f
′(x) = 1/(1 + L2) > 0. Hence for any

sufficiently small ε > 0, we can choose x2 ≥ x1 so that f ′(x) ≥ ε for x ≥ x2. But
then f(x) ≥ f(x2) + ε(x − x2), which contradicts L < +∞. Hence L = +∞, as
desired.



Variant. (by Leonid Shteyman) One obtains a similar argument by writing

f ′(x) =
1

1 + f(x)2
− f(x)2

x2(1 + f(x)2)
,

so that

− 1

x2
≤ f ′(x)− 1

1 + f(x)2
≤ 0.

Hence f ′(x) − 1/(1 + f(x)2) tends to 0 as x → +∞, so f(x) is bounded below,
and tends to +∞ if and only if the improper integral

∫
dx/(1 + f(x)2) diverges.

However, if the integral were to converge, then as x→ +∞ we would have 1/(1 +
f(x)2)→ 0; however, since f is bounded below, this again forces f(x)→ +∞.

Second solution. (by Catalin Zara) The function g(x) = f(x) + x satisfies the
differential equation

g′(x) = 1 +
1− (g(x)/x− 1)2

1 + x2(g(x)/x− 1)2
.

This implies that g′(x) > 0 for all x > 1, so the limit L1 = limx→+∞ g(x) exists.
In addition, we cannot have L1 < +∞, or else we would have limx→+∞ g

′(x) = 0
whereas the differential equation forces this limit to be 1. Hence g(x) → +∞ as
x→ +∞.

Similarly, the function h(x) = −f(x) + x satisfies the differential equation

h′(x) = 1− 1− (h(x)/x− 1)2

1 + x2(h(x)/x− 1)2
.

This implies that h′(x) ≥ 0 for all x, so the limit L2 = limx→+∞ h(x) exists. In
addition, we cannot have L2 < +∞, or else we would have limx→+∞ h

′(x) = 0
whereas the differential equation forces this limit to be 1. Hence h(x) → +∞ as
x→ +∞.

For some x1 > 1, we must have g(x), h(x) > 0 for all x ≥ x1. For x ≥ x1, we have
|f(x)| < x and hence f ′(x) > 0, so the limit L = limx→+∞ f(x) exists. Once again,
we cannot have L < +∞, or else we would have limx→+∞ f

′(x) = 0 whereas the
original differential equation (e.g., in the form given in the first solution) forces
this limit to be 1/(1 + L2) > 0. Hence f(x)→ +∞ as x→∞, as desired.

Third solution. (by Noam Elkies) Consider the function g(x) = f(x) + 1
3
f(x)3,

for which

g′(x) = f ′(x)(1 + f(x)2) = 1− f(x)2

x2

for x > 1. Since evidently g′(x) < 1, g(x) − x is bounded above for x large. As
in the first solution, f(x) is bounded below for x large, so 1

3
f(x)3 − x is bounded

above by some c > 0. For x ≥ c, we obtain f(x) ≤ (6x)1/3.

Since f(x)/x → 0 as x → +∞, g′(x) → 1 and so g(x)/x → 1. Since g(x) tends
to +∞, so does f(x). (With a tiny bit of extra work, one shows that in fact
f(x)/(3x)1/3 → 1 as x→ +∞.)



7. ([B3] 2018) Find all positive integers n < 10100 for which simultaneously n divides
2n, n− 1 divides 2n − 1, and n− 2 divides 2n − 2.

Proof. The values of n with this property are 22` for ` = 1, 2, 4, 8. First, note that
n divides 2n if and only if n is itself a power of 2; we may thus write n = 2m and
note that if n < 10100, then

2m = n < 10100 < (103)34 < (210)34 = 2340.

Moreover, the case m = 0 does not lead to a solution because for n = 1, n− 1 = 0
does not divide 2n − 1 = 1; we may thus assume 1 ≤ m ≤ 340.

Next, note that modulo n − 1 = 2m − 1, the powers of 2 cycle with period m
(the terms 20, . . . , 2m−1 remain the same upon reduction, and then the next term
repeats the initial 1); consequently, n − 1 divides 2n − 1 if and only if m divides
n, which happens if and only if m is a power of 2. Write m = 2` and note that
2` < 340 < 512, so ` < 9. The case ` = 0 does not lead to a solution because for
n = 2, n− 2 = 0 does not divide 2n − 2 = 2; we may thus assume 1 ≤ ` ≤ 8.

Finally, note that n − 2 = 2m − 2 divides 2n − 2 if and only if 2m−1 − 1 divides
2n−1− 1. By the same logic as the previous paragraph, this happens if and only if
m− 1 divides n− 1, that is, if 2` − 1 divides 2m − 1. This in turn happens if and
only if ` divides m = 2`, which happens if and only if ` is a power of 2. The values
allowed by the bound ` < 9 are ` = 1, 2, 4, 8; for these values, m ≤ 28 = 256 and

n = 2m ≤ 2256 ≤ (23)86 < 1086 < 10100,

so the solutions listed do satisfy the original inequality.

8. ([B4] 2018) Given a real number a, we define a sequence by x0 = 1, x1 = x2 = a,
and xn+1 = 2xnxn−1 − xn−2 for n ≥ 2. Prove that if xn = 0 for some n, then the
sequence is periodic.

Proof. We first rule out the case |a| > 1. In this case, we prove that |xn+1| ≥ |xn|
for all n, meaning that we cannot have xn = 0. We proceed by induction; the
claim is true for n = 0, 1 by hypothesis. To prove the claim for n ≥ 2, write

|xn+1| = |2xnxn−1 − xn−2|
≥ 2|xn||xn−1| − |xn−2|
≥ |xn|(2|xn−1| − 1) ≥ |xn|,

where the last step follows from |xn−1| ≥ |xn−2| ≥ · · · ≥ |x0| = 1.

We may thus assume hereafter that |a| ≤ 1. We can then write a = cos b for some
b ∈ [0, π]. Let {Fn} be the Fibonacci sequence, defined as usual by F1 = F2 = 1
and Fn+1 = Fn + Fn−1. We show by induction that

xn = cos(Fnb) (n ≥ 0).



Indeed, this is true for n = 0, 1, 2; given that it is true for n ≤ m, then

2xmxm−1 = 2 cos(Fmb) cos(Fm−1b)

= cos((Fm − Fm−1)b) + cos((Fm + Fm−1)b)

= cos(Fm−2b) + cos(Fm+1b)

and so xm+1 = 2xmxm−1 − xm−2 = cos(Fm+1b). This completes the induction.

Since xn = cos(Fnb), if xn = 0 for some n then Fnb = k
2
π for some odd integer k.

In particular, we can write b = c
d
(2π) where c = k and d = 4Fn are integers.

Let xn denote the pair (Fn, Fn+1), where each entry in this pair is viewed as an
element of Z/dZ. Since there are only finitely many possibilities for xn, there must
be some n2 > n1 such that xn1 = xn2 . Now xn uniquely determines both xn+1 and
xn−1, and it follows that the sequence {xn} is periodic: for ` = n2− n1, xn+` = xn
for all n ≥ 0. In particular, Fn+` ≡ Fn (mod d) for all n. But then Fn+`c

d
− Fnc

d
is

an integer, and so

xn+` = cos

(
Fn+`c

d
(2π)

)
= cos

(
Fnc

d
(2π)

)
= xn

for all n. Thus the sequence {xn} is periodic, as desired.

Remark. Karl Mahlburg points out that one can motivate the previous solution
by computing the terms

x2 = 2a2 − 1, x3 = 4a3 − 3a, x4 = 16a5 − 20a3 + 5a

and recognizing these as the Chebyshev polynomials T2, T3, T5. (Note that T3 was
used in the solution of problem A3.)

Remark. It is not necessary to handle the case |a| > 1 separately; the cosine
function extends to a surjective analytic function on C and continues to satisfy the
addition formula, so one can write a = cos b for some b ∈ C and then proceed as
above.

9. ([B5] 2018) Let f = (f1, f2) be a function from R2 to R2 with continuous partial
derivatives ∂fi

∂xj
that are positive everywhere. Suppose that

∂f1
∂x1

∂f2
∂x2
− 1

4

(
∂f1
∂x2

+
∂f2
∂x1

)2

> 0

everywhere. Prove that f is one-to-one.



Proof. Let (a1, a2) and (a′1, a
′
2) be distinct points in R2; we want to show that

f(a1, a2) 6= f(a′1, a
′
2). Write (v1, v2) = (a′1, a

′
2) − (a1, a2), and let γ(t) = (a1, a2) +

t(v1, v2), t ∈ [0, 1], be the path between (a1, a2) and (a′1, a
′
2). Define a real-valued

function g by g(t) = (v1, v2) · f(γ(t)). By the Chain Rule,

f ′(γ(t)) =

(
∂f1/∂x1 ∂f1/∂x2
∂f2/∂x1 ∂f2/∂x2

)(
v1
v2

)
.

Abbreviate ∂fi/∂xj by fij; then

g′(t) =
(
v1 v2

)(f11 f12
f21 f22

)(
v1
v2

)
= f11v

2
1 + (f12 + f21)v1v2 + f22v

2
2

= f11

(
v1 +

f12 + f21
2f11

v2

)2

+
4f11f22 − (f12 + f21)

2

4f11
v22

≥ 0

since f11 and f11f22 − (f12 + f21)
2/4 are positive by assumption. Since the only

way that equality could hold is if v1 and v2 are both 0, we in fact have g′(t) > 0
for all t. But if f(a1, a2) = f(a′1, a

′
2), then g(0) = g(1), a contradiction.

Remark. A similar argument shows more generally that f : Rn → Rn is injective
if at all points in Rn, the Jacobian matrix Df satisfies the following property: the
quadratic form associated to the bilinear form with matrix Df (or the symmetrized
bilinear form with matrix (Df + (Df)T )/2) is positive definite. In the setting of
the problem, the symmetrized matrix is(

f11 (f12 + f21)/2
(f12 + f21)/2 f22

)
,

and this is positive definite if and only if f11 and the determinant of the matrix
are both positive (Sylvester’s criterion). Note that the assumptions that f12, f21 >
0 are unnecessary for the argument; it is also easy to see that the hypotheses
f11, f12 > 0 are also superfluous. (The assumption f11f22− (f12 + f21)

2 > 0 implies
f11f22 > 0, so both are nonzero and of the same sign; by continuity, this common
sign must be constant over all of R2. If it is negative, then apply the same logic
to (−f1,−f2).)


