Fall 2021
Wednesday, November 22nd, 2021

Last time we started working on the following 5 problems. For some of them we
found solutions, but for some we did not. Let’s pick up from where we left | I am
adding more problems to this working sheet, hopping they will be a good exercise for
the coming up exam!

1. (Putnam B3 2005 ) Find all differentiable functions f : (0,00) — (0, 00) for which
there is a positive real number a such that

") =7
for all x > 0.

Proof. Substitute a/z for x in the given equation:

Differentiate: 2 (0 /2)
a a’f'(a/x
f//<x> =—— + 3 5
v f(afx) — 2f(a/z)
Now substitute to eliminate evaluations at a/x:
f'a) | [(@)?

P === ey

Clear denominators:

of(2)f"(x) + f(2)f (x) = o f'(2).
Divide through by f(x)? and rearrange:
f@) ') @)
fl)  flx)  f@)?

The right side is the derivative of xf'(x)/f(x), so that quantity is constant. That
is, for some d,
f'x) _d

fl@) z
Integrating yields f(z) = cx?, as desired.
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]

2. Suppose that f is a function on the interval [1, 3] such that —1 < f(z) <1 for all
x and ff’ f(z)dx = 0. How large can ff’ @ dx be?

Solution: In all solutions, we assume that the function f is integrable.



Proof. Let g(x) be 1 for 1 < x < 2 and —1 for 2 < z
g(z) — f(z). Then f13 h(z)dz = 0 and h(z) > 0 for 1
2 <z <3. Now

3, and define h(z) =
x < 2, h(z) <0 for

x 1 x 9 x
2 3
el _ [* 1)
> — =
= 5 dx i 5 dr =0,

and thus f13 @ dr < ff % dr = 2log2 —log3 = log 3. Since g(z) achieves the
upper bound, the answer is log %.

]

. (Putnam and beyound exemplu pag 132) Let f : [0,1] — R be a continuous
function with the property that
1
T
de = —.
R

Prove that there exists z¢ € (0, 1) such that

1 1
< < —.
1+ Zo f<x0) 2.%‘0

Proof. to come! O

. Let f :]0,00) — R be astrictly decreasing continuous function such that lim, ., f(z) =

0. Prove that  fa) - flot 1)
x)— f(x
[ e

diverges.

Proof. Solution: First solution. Note that the hypotheses on f imply that
f(z) > 0 for all z € [0,400), so the integrand is a continuous function of f and
the integral makes sense. Rewrite the integral as

[ -55)

and suppose by way of contradiction that it converges to a finite limit L. For
n > 0, define the Lebesgue measurable set

flx+n+1)

I,={ze[0,1]:1— e

<1/2}.



Then L > > 2(1 — p(I,,)), so the latter sum converges. In particular, there

exists a nonnegative integer N for which Y >° (1 — p(I,)) < 1; the intersection

I=JL=1001-)(0,1]-I)

n=N
then has positive Lebesgue measure.
By Taylor’s theorem with remainder, for ¢ € [0, 1/2],

1
—log(l1—t) <t+t* sup {—}
t€[0,1/2] (1 - t)z

—t+4ﬁ<5t
n 37 =37

For each nonnegative integer n > N, we then have

v [ ()
3 () -
23 (T
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For each x € I, log f(x+N)/f(x+n) is a strictly increasing unbounded function of
n. By the monotone convergence theorem, the integral [, log(f(z+N)/f(x+n)) dx
grows without bound as n — 400, a contradiction. Thus the original integral
diverges, as desired.

Remark. This solution is motivated by the commonly-used fact that an infinite
product (14x1)(1+x2) - - - converges absolutely if and only if the sum zy +xo+- - -
converges absolutely. The additional measure-theoretic argument at the beginning
is needed because one cannot bound — log(1 —t) by a fixed multiple of ¢ uniformly
for all t € [0,1).

Greg Martin suggests a variant solution that avoids use of Lebesgue measure. Note

first that if f(y) > 2f(y + 1), then either f(y) > v2f(y +1/2) or f(y 4+ 1/2) >
V2f(y +1), and in either case we deduce that

[ e (- ) -

1
=



If there exist arbitrarily large values of y for which f(y) > 2f(y + 1), we deduce
that the original integral is greater than any multiple of 1/7, and so diverges.
Otherwise, for z large we may argue that

f@) = fletl) 3, f@

f(x) 5 7 fle+1)

as in the above solution, and again get divergence using a telescoping sum.

Second solution. (Communicated by Paul Allen.) Let b > a be nonnegative
integers. Then

f(z :17+1 fla+k)— flx+k+1)
/ Z/ Flatk) e

1 -1
fx—i—k) fle+k+1)
/0 flz+k) du

=a

1b1
/ + k) — f<x+k+1)dx
0

— flz+a)
fx+a)—f(l‘+b)
fo+a) dz.

Now since f(x) — 0, given a, we can choose an integer [(a) > a for which f(i(a)) <

z+a)—f(x+l(a f(a)) .
fla+1)/2; then HHHA-JELO) >y JUGL 1 /2 for all & € [0, 1) Thus if we

define a sequence of integers a,, by ag = 0, a,+1 = l(a,), then

/ flx :U+1d _Z/a"“f :L‘—i—l)dx
>;/0(1/2)dx

and the final sum clearly diverges.

Third solution. (By Joshua Rosenberg, communicated by Catalin Zara.) If the
original integral converges, then on one hand the integrand (f(x)— f(z+1))/f(x) =
1— f(z+1)/f(z) cannot tend to 1 as x — 0o. On the other hand, for any a > 0,




and the last expression tends to 0 as a — oo. Hence by the squeeze theorem,
fla+1)/f(a) — 0 as a — oo, a contradiction. O

. Let f:[0,1] — R be a function for which there exists a constant K > 0 such that
|f(z) — f(y)| < K |z —y| for all x,y € [0,1]. Suppose also that for each rational
number r € [0, 1], there exist integers a and b such that f(r) = a + br. Prove

that there exist finitely many intervals [y,..., I, such that f is a linear function
on each [; and [0,1] = J_, ;.

Proof. Let us say that a linear function g on an interval is integral if it has the
form g(x) = a+bx for some a, b € Z, and that a piecewise linear function is integral
if on every interval where it is linear, it is also integral.

For each positive integer n, define the n-th Farey sequence F,, as the sequence
of rational numbers in [0, 1] with denominators at most n. It is easily shown by
induction on n that any two consecutive elements g,;—: of F,,, written in lowest
terms, satisfy ged(s,s’) =1, s+ s > n, and s — rs’ = 1. Namely, this is obvious
for n = 1 because F} = %, % To deduce the claim for F,, from the claim for F,_q,
let %, g—: be consecutive elements of F,,_;. If s+ s = n, then for m = r +r’ we have
Tt < Z—; and the pairs £, ™ and , ’;—: satisfy the desired conditions. Conversely,
if s + 5" > n, then we cannot have £ < ™ < ;;: for a € 7Z, as this yields the
contradiction

n=(ms—nr)s + (r'n—ms') > s+ >n;
! . . .
hence £, % remain consecutive in F;,.

Let f, : [0,1] — R be the piecewise linear function which agrees with f at each
element of F), and is linear between any two consecutive elements of F,,. Between

. / . . . . .
any two consecutive elements =, 5 of F,,, f, coincides with some linear function

a+ bx. Since sf(%),s'f(%) € Z, we deduce first that

)= f(2)

s/ S

b= ss'(f(

is an integer of absolute value at most K, and second that both as = sf(%) — br
and as’ = §'f (%) — br’ are integral. It follows that f,, is integral.

We now check that if n > 2K, then f, = f,_1. For this, it suffices to check that

. /. . . .
for any consecutive elements Z, ™ = in F},, the linear function ag + bz matching

Jn-1 from T to Z—; has the property that f(™) = ag + by™>. Define the integer

m

t = nf(%) — apn — bym. We then compute that the slope of f, from % to ™ is
bo + st, while the slope of f, from * to g—: is at most by — s't. In order to have
|bo + st|, |bp — s't] < K, we must have (s + §') |t| < 2K since s + 8 = n > 2K,

this is only possible if ¢ = 0. Hence f,, = f,_1, as claimed.

It follows that for any n > 2K, we must have f,, = f,.1 = ---. Since the condition
on f and K implies that f is continuous, we must also have f, = f, completing
the proof.

]



Remark: The condition on f and K is called Lipschitz continuity.

Remark: An alternate approach is to prove that for each x € [0, 1), there exists
e € (0,1 — z) such that the restriction of f to [x,x + €) is linear; one may then
deduce the claim using the compactness of [0, 1]. In this approach, the role of the
Farey sequence may also be played by the convergents of the continued fraction of
x (at least in the case where z is irrational).

Remark: This problem and solution are due to one of us (Kedlaya). Some related
results can be proved with the Lipschitz continuity condition replaced by suitable
convexity conditions. See for example: Kiran S. Kedlaya and Philip Tynan, De-
tecting integral polyhedral functions, Confluentes Mathematici 1 (2009), 87-109.
Such results arise in the theory of p-adic differential equations; see for example:
Kiran S. Kedlaya and Liang Xiao, Differential modules on p-adic polyannuli, J.
Inst. Math. Jusssieu 9 (2010), 155-201 (errata, ibid., 669-671).

. ([B5] 2009 ) Let f: (1,00) — R be a differentiable function such that

2? — f(z)®

W fOI' all x > 1.

f'(x) =
Prove that lim,_,, f(z) = oo.

Proof. First solution. If f(x) > z for all > 1, then the desired conclusion
clearly holds. We may thus assume hereafter that there exists xzy > 1 for which

f(afo) < xg.

Rewrite the original differential equation as

2 +1 f(a)?
2 14 f(x)*

flo)=1-
Put co = min{0, f(zo) — 1/z0}. For all x > x4, we have f'(z) > —1/x* and so

f0) 2 SGao) — [ atfe > eo

Zo

In the other direction, we claim that f(z) < x for all x > z,. To see this, suppose
the contrary; then by continuity, there is a least © > xy for which f(z) > x, and
this least value satisfies f(z) = x. However, this forces f'(z) = 0 < 1 and so
f(z —€) > ax — e for € > 0 small, contradicting the choice of .

Put z; = max{xy, —co}. For x > x1, we have |f(z)] < xz and so f'(z) > 0. In
particular, the limit lim, ., f(z) = L exists.

Suppose that L < +o0; then lim, . f'(x) = 1/(1 4+ L?) > 0. Hence for any
sufficiently small € > 0, we can choose o > x; so that f'(z) > € for x > x5. But
then f(z) > f(x2) + €(x — x2), which contradicts L < 4o00. Hence L = 400, as
desired.



Variant. (by Leonid Shteyman) One obtains a similar argument by writing

o L fay
PO =556 ~ 20+ o

so that .
_ < - <0

Hence f'(z) — 1/(1 + f(x)?) tends to 0 as x — +oo, so f(z) is bounded below,
and tends to +oo if and only if the improper integral [ dx/(1+ f(x)?) diverges.
However, if the integral were to converge, then as x — 400 we would have 1/(1 +
f(x)?) — 0; however, since f is bounded below, this again forces f(z) — +oc.

Second solution. (by Catalin Zara) The function g(z) = f(z) + x satisfies the
differential equation

1—(g(x)/z — 1)
1+ 2%(g(x)/z —1)%

This implies that ¢'(z) > 0 for all z > 1, so the limit L; = lim,_,, g(z) exists.
In addition, we cannot have L; < 400, or else we would have lim,_, . ¢'(x) =0
whereas the differential equation forces this limit to be 1. Hence g(z) — +oo as
Tr — +00.

g(x) =1+

Similarly, the function h(x) = —f(x) + z satisfies the differential equation
_ L= (h(z)/z - 1)?
1+ 22(h(z)/x — 1)
This implies that h'(z) > 0 for all z, so the limit Ly = lim,, . h(x) exists. In
addition, we cannot have Ly < +00, or else we would have lim, , . h'(z) = 0

whereas the differential equation forces this limit to be 1. Hence h(x) — +oo as
T — +00.

n(z) =

For some z; > 1, we must have g(x), h(z) > 0 for all > x,. For > z;, we have
|f(z)| < x and hence f’(z) > 0, so the limit L = lim, . f(z) exists. Once again,
we cannot have L < 400, or else we would have lim, , ., f'(x) = 0 whereas the
original differential equation (e.g., in the form given in the first solution) forces
this limit to be 1/(1 + L?) > 0. Hence f(x) — +oo as & — oo, as desired.

Third solution. (by Noam Elkies) Consider the function g(z) = f(z) + 5 f(x)?,
for which fo)?
x
J@) = P+ fa) =118

for x > 1. Since evidently ¢'(z) < 1, g(z) — = is bounded above for z large. As
in the first solution, f(z) is bounded below for = large, so 1 f(2)* — « is bounded
above by some ¢ > 0. For # > ¢, we obtain f(x) < (62)/%.

Since f(z)/x — 0 as v — 400, ¢'(x) — 1 and so g(x)/x — 1. Since g(z) tends
to 400, so does f(z). (With a tiny bit of extra work, one shows that in fact
f(z)/(32)Y3 =1 as x — +00.)

]



7. ([B3] 2018) Find all positive integers n < 10'% for which simultaneously n divides
2" n — 1 divides 2" — 1, and n — 2 divides 2" — 2.

Proof. The values of n with this property are 22 for ¢ = 1,2,4,8. First, note that
n divides 2" if and only if n is itself a power of 2; we may thus write n = 2™ and
note that if n < 10'%°, then

om _ n < 10100 < (103)34 < (210)34 — 2340'

Moreover, the case m = 0 does not lead to a solution because forn =1, n—1=0
does not divide 2" — 1 = 1; we may thus assume 1 < m < 340.

Next, note that modulo n — 1 = 2™ — 1, the powers of 2 cycle with period m
(the terms 2°,...,2™! remain the same upon reduction, and then the next term
repeats the initial 1); consequently, n — 1 divides 2" — 1 if and only if m divides
n, which happens if and only if m is a power of 2. Write m = 2¢ and note that
2¢ < 340 < 512, s0 £ < 9. The case ¢ = 0 does not lead to a solution because for
n=2,n—2 =0 does not divide 2" — 2 = 2; we may thus assume 1 < ¢ < 8.
Finally, note that n — 2 = 2™ — 2 divides 2" — 2 if and only if 2! — 1 divides
27=1 — 1. By the same logic as the previous paragraph, this happens if and only if
m — 1 divides n — 1, that is, if 2¢ — 1 divides 2™ — 1. This in turn happens if and
only if ¢ divides m = 2¢, which happens if and only if ¢ is a power of 2. The values
allowed by the bound ¢ < 9 are £ = 1,2,4,8; for these values, m < 2% = 256 and

n = om S 2256 S (23)86 < 1086 < 101007

so the solutions listed do satisfy the original inequality.
[

8. ([B4] 2018) Given a real number a, we define a sequence by xy = 1, x1 = x5 = a,
and x,.1 = 2v,2,_ 1 — T,_o for n > 2. Prove that if x,, = 0 for some n, then the
sequence is periodic.

Proof. We first rule out the case |a| > 1. In this case, we prove that |z, 1| > |z,|
for all n, meaning that we cannot have x,, = 0. We proceed by induction; the
claim is true for n = 0,1 by hypothesis. To prove the claim for n > 2, write

|xn+l‘ = ’2$n$n—l - an_2|
> 2|zp||Tn-1] — |Tn-2|
> || 2lzn-a] = 1) = |z,
where the last step follows from |z, 1| > |z, o > -+ > |zo| = 1.

We may thus assume hereafter that |a| < 1. We can then write a = cos b for some
b € [0,7]. Let {F,} be the Fibonacci sequence, defined as usual by F} = I, = 1
and F,,1 = F, + F,,_1. We show by induction that

x, = cos(F,b) (n >0).



Indeed, this is true for n = 0, 1, 2; given that it is true for n < m, then

20 Ty—1 = 2 cos(Fp,b) cos(F,_1b)
= cos((F,, — F—1)b) + cos((Fy, + Frnm1)b)
= cos(Fy,—2b) + cos(Fiy11b)

and S0 Ty, 11 = 2T %1 — Tm_o = c08(Fy,11b). This completes the induction.

Since x,, = cos(Fy,b), if z,, = 0 for some n then F,,b = gﬂ' for some odd integer k.
In particular, we can write b = §(27) where ¢ = k and d = 4F,, are integers.

Let x, denote the pair (F,, F,,+1), where each entry in this pair is viewed as an
element of Z/dZ. Since there are only finitely many possibilities for z,,, there must
be some ny > ny such that z,, = z,,. Now z,, uniquely determines both z,,;; and
Zn—1, and it follows that the sequence {x,} is periodic: for £ = ny —ny, x,00 = x,
for all n > 0. In particular, F,,, = F,, (mod d) for all n. But then % — % is

an integer, and so
Fy
Tpi¢ = COS ( ;KC(ZW)>

~ cos (%C(Qﬂ)) —

for all n. Thus the sequence {z,} is periodic, as desired.

Remark. Karl Mahlburg points out that one can motivate the previous solution
by computing the terms

Ty = 2a% — 1,23 = 4a® — 3a, x4 = 16a° — 204> + 5a

and recognizing these as the Chebyshev polynomials Ty, T3, T5. (Note that T3 was
used in the solution of problem A3.)

Remark. It is not necessary to handle the case |a|] > 1 separately; the cosine
function extends to a surjective analytic function on C and continues to satisfy the
addition formula, so one can write a = cosb for some b € C and then proceed as
above.

]

. ([B5] 2018) Let f = (f1, f2) be a function from R? to R? with continuous partial
derivatives % that are positive everywhere. Suppose that
J

0fi9fs 1 (%+%)2>0

dw1 91y 4 \Ozo ' Omy

everywhere. Prove that f is one-to-one.



Proof. Let (ay,as) and (a,ad)) be distinct points in R?; we want to show that
flay,a2) # f(a},ay). Write (v, ve) = (a},a)) — (a1, az2), and let y(t) = (a1, a2) +
t(vy,vq), t € [0,1], be the path between (a1, as2) and (a},a)). Define a real-valued
function g by g(t) = (vi,v9) - f(7(t)). By the Chain Rule,

, _ (0f1/0xy Of1)0x v
rao = (5lon ohion) ()
Abbreviate 0f;/0x; by fi;; then

o= e (1) ()

= fllU% + (fi2 + for)vive + f22U§

>y — 2
= fi <v1 + %U2> I Ji1f22 45{112 + fo1) o2
>0

since fi1 and fi1fao — (fi2 + fo1)?/4 are positive by assumption. Since the only
way that equality could hold is if v; and vy are both 0, we in fact have ¢/(t) > 0
for all . But if f(ay,a2) = f(al,ad}), then g(0) = g(1), a contradiction.

Remark. A similar argument shows more generally that f : R™ — R" is injective
if at all points in R", the Jacobian matrix D f satisfies the following property: the
quadratic form associated to the bilinear form with matrix D f (or the symmetrized
bilinear form with matrix (Df + (Df)")/2) is positive definite. In the setting of
the problem, the symmetrized matrix is

((fm 4{1}21)/2 (o J}2521)/2> |

and this is positive definite if and only if fi; and the determinant of the matrix
are both positive (Sylvester’s criterion). Note that the assumptions that fia, for >
0 are unnecessary for the argument; it is also easy to see that the hypotheses
f11, fi2 > 0 are also superfluous. (The assumption fi1 for — (fio + fo1)? > 0 implies
f11f22 > 0, so both are nonzero and of the same sign; by continuity, this common
sign must be constant over all of R?. If it is negative, then apply the same logic

to (=f1,—/f2).)
O



