10/26/11 - Calculus (Week 1)

1. A not uncommon calculus mistake is to believe that the product rule for derivatives says that (fg)' = f'g'. If $f(x) = e^{x^2}$, determine, with proof, whether there exists an open interval (a, b) and a nonzero function g defined on (a, b) such that this wrong product rule is true for x in (a, b). (Putnam 1988)

2. Is there an infinite sequence of real numbers a_1, a_2, a_3, \ldots such that

$$a_1^m + a_2^m + a_3^m + \dots = m$$

for every positive integer m? (Putnam 2010)

3. Suppose that a sequence a_1, a_2, a_3, \ldots satisfies $0 < a_n \le a_{2n} + a_{2n+1}$ for all $n \ge 1$. Prove that the series $\sum_{n=1}^{\infty} a_n$ diverges. (Putnam 1994)

4. Functions f, g, h are differentiable on some open interval around 0 and satisfy the equations and initial conditions

$$f' = 2f^2gh + \frac{1}{gh}, \quad f(0) = 1,$$

$$g' = fg^2h + \frac{4}{fh}, \quad g(0) = 1,$$

$$h' = 3fgh^2 + \frac{1}{fg}, \quad h(0) = 1.$$

Find an explicit formula for f(x), valid in some open interval around 0. (Putnam 2009)

5. Find all differentiable functions $f : \mathbb{R} \to \mathbb{R}$ such that

$$f'(x) = \frac{f(x+n) - f(x)}{n}$$

for all real numbers x and all positive integers n. (Putnam 2010)

6. Let f be a real function on the real line with continuous third derivative. Prove that there exists a point a such that

$$f(a) \cdot f'(a) \cdot f''(a) \cdot f'''(a) \ge 0.$$

(Putnam 1998)

7. Find all real-valued continuously differentiable functions f on the real line such that for all x,

$$(f(x))^{2} = \int_{0}^{x} \left[(f(t))^{2} + (f'(t))^{2} \right] dt + 1990.$$

(Putnam 1990)

8. Let f be a twice-differentiable real-valued function satisfying

$$f(x) + f''(x) = -xg(x)f'(x),$$

where $g(x) \ge 0$ for all real x. Prove that |f(x)| is bounded. (Putnam 1997)