Polynomials. 10/23/13

- What is the remainder when the polynomial $x^{50} + 50$ is divided by x 1?
- What is the remainder when the polynomial $x^{50} + 50$ is divided by $x^2 x$?
- (VT 1992, #6) Let p(x) be the polynomial

$$p(x) = x^3 + ax^2 + bx + c.$$

Show that if p(r) = 0, then

$$\frac{p(x)}{x-r}-\frac{2p(x+1)}{x+1-r}+\frac{p(x+2)}{x+2-r}=2$$
 for all x except
 $x=r,\,r-1$ and $r-2.$

4. (VT 1995, #3) Let $n \ge 2$ be a positive integer and let f(x) be the polynomial

$$1 - (x + x^{2} + \dots + x^{n}) + (x + x^{2} + \dots + x^{n})^{2} - \dots + (-1)^{n} (x + x^{2} + \dots + x^{n})^{n}.$$

If r is an integer such that $2 \le r \le n$, show that the coefficient of x^r in f(x) is zero.

5. (Putnam 2007, B1) Let f be a polynomial with positive integer coefficients. Prove that if n is a positive integer, then f(n) divides f(f(n) + 1) if and only if n = 1.

6. Let f(x) be a polynomial with integral coefficients, and k > 1 is an integer. Suppose none of the numbers $f(1), f(2), \ldots, f(k)$ are divisible by k. Prove that f(x) has no integral roots.

7. (Putnam 2005, B1) Find a nonzero polynomial P(x,y) such that P([a],[2a]) =0 for all real numbers a. (Note: [v] is the greatest integer less or equal to v.)