SEQUENCES AND RECURRENCES (03/13/24)

1. (1994-A1) Suppose that a sequence

$$a_1, a_2, a_3, \dots$$

satisfies

$$0 < a_n \le a_{2n} + a_{2n+1}$$

for all $n \geq 1$. Prove that the series

$$\sum_{n=1}^{\infty} a_n$$

diverges.

2. (1992-A1) Prove that

$$f(n) = 1 - n$$

is the only integer-valued function defined on the integers that satisfies the following conditions:

- (1) f(f(n)) = n for all integers n;
- (2) f(f(n+2)+2) = n for all integers n;
- (3) f(0) = 1.

3. (Bratislava Correspondence Seminar, 1999) Let F_n be the Fibonacci numbers, so that $F_1 = F_2 = 1$ and $F_{k+1} = F_k + F_{k-1}$. Suppose P(x) is a polynomial of degree 998 such that $P(n) = F_n$ for $n = 1000, \ldots, 1998$. Show that P(1999) = F(1999) - 1.

4. (Leningrad Math Olympiad 1989, Grade 10) A sequence of real numbers a_1, a_2, \ldots has the property that

$$|a_m + a_n - a_{m+n}| \le \frac{1}{m+n}$$

for all m and n. Prove that the sequence is an arithmetic progression.

5. (1998-A4) Let $A_1 = 0$ and $A_2 = 1$. For n > 2, the number A_n is defined by concatenating the decimal expansions of A_{n-1} and A_{n-2} from left to right. For example, $A_3 = A_2A_1 = 10$, $A_4 = A_3A_2 = 101$, $A_5 = A_4A_3 = 10110$, and so forth. Determine all n such that 11 divides A_n .

6. (2001-B3) For any positive integer n let $\langle n \rangle$ denote the closest integer to \sqrt{n} . Evaluate

$$\sum_{n=1}^{\infty} \frac{2^{\langle n \rangle} + 2^{-\langle n \rangle}}{2^n}.$$

7. (2002-A5) Define a sequence by $a_0 = 1$, together with the rules $a_{2n+1} = a_n$ and $a_{2n+2} = a_n + a_{n+1}$ for each integer $n \ge 0$. Prove that every positive rational number appears in the set

$$\left\{\frac{a_{n-1}}{a_n}: n \ge 0\right\} = \left\{\frac{1}{1}, \frac{1}{2}, \frac{2}{1}, \frac{1}{3}, \frac{3}{2}, \dots\right\}.$$

8. (1993-A6) The infinite sequence of 2's and 3's

 $2, 3, 3, 2, 3, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, \dots$

has the property that, if one forms a second sequence that records the number of 3's between successive 2's, the result is identical to the given sequence. Show that there exists a real number r such that, for any n, the nth term of the sequence is 2 if and only if n = 1 + |rm| for some nonnegative integer m.

(Side comment: what happens for other numbers in place of 2 and 3?)